Skip to main content

Small-scale Production and Business Plan for Phycocyanin from Cyanobacteria

  • 162 Accesses

Abstract

Phycobiliproteins are water-soluble proteins present in cyanobacteria and certain algae. They capture light energy, which is then passed on to chlorophylls during photosynthesis. The major phycobiliproteins are phycocyanin, phycoerythrin, and allophycocyanin. The C-phycocyanin (C-PC) is a blue coloured pigment in cyanobacteria, which is considered as a healthy ingredient in cyanobacterial-based foods products while its colouring, fluorescent, or antioxidant properties are utilized only to a minor extent. However, recent research and developments in C-PC synthesis and functionality have expanded the potential applications of C-PC in biotechnology, diagnostics, foods, and medicine. The productivity of C-PC has been increased in heterotrophic, high cell density cultures that are grown under well-controlled and axenic conditions. C-PC purification protocols based on various chromatographic principles or novel two-phase aqueous extraction methods have expanded in numbers and improved in performance. The biggest constrain on pigment bioprocessing comes from the installation and operation costs; thus, fundamental and applied research are still needed to overcome such constrains and give the cyanobacteria industry an opportunity in the world market. Several factors can affect the extraction of pigments, including the target pigment, organism, market trends, available technology, and costs. In this, the main extraction methodologies were discussed, taking into account the advantages and disadvantages for C-phycocyanin pigment, type of organism, cost, and final market.

Keywords

  • Phycobiliproteins
  • Cyanobacteria
  • C-phycocyanin
  • Applications
  • Productivity
  • Purification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-19-5041-4_14
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-19-5041-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

References

  • Abalde, J., Betancour, L., Torres, E., Cid, A., & Barwel, C. (1998). Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Science, 136, 109–120.

    CrossRef  CAS  Google Scholar 

  • Adams, D. G., Al-hasan, R. H., & Bhaya, D. (2002). The ecology of cyanobacteria-their diversity in time and space. Kluwer Academic Publishers.

    Google Scholar 

  • Bermejo, R., Gabriel, A. F., Ibanez, M. J., Fernandez, J. M., Molina, E., & Alvarez-Pez, J. M. (2003). Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. Journal of Chromatography B, 790, 317–325.

    CrossRef  CAS  Google Scholar 

  • Berns, D. S., & MacColl, R. (1989). Phycocyanin in physical–chemical studies. Chemical Reviews, 89(4), 807–825.

    CrossRef  CAS  Google Scholar 

  • Cai, Y. A., Murphy, J. T., Wedemaye, G. J., & Glazer, A. N. (2001). Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Analytical Biochemistry, 290, 186–204.

    CrossRef  CAS  Google Scholar 

  • Carlozzi, P. (2003). Dilution of solar radiation through “culture” lamination in photobioreactor rows facing South–North: a way to improve the efficiency of light utilisation of cyanobacteria (Arthrospira platensis). Biotechnology and Bioengineering, 81, 305–315.

    CrossRef  CAS  Google Scholar 

  • Chaiklahan, R., Chirasuwan, N., & Bunnag, B. (2012). Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47(4), 659–664.

    CrossRef  CAS  Google Scholar 

  • Chen, F., & Zhang, Y. (1997). High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microbial Technology, 20, 221–224.

    CrossRef  CAS  Google Scholar 

  • Chen, F., Zhang, Y., & Guo, S. (1996). Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters, 18, 603–608.

    CrossRef  CAS  Google Scholar 

  • Chojnacka, K., & Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microbial Technology, 34, 461–465.

    CrossRef  CAS  Google Scholar 

  • Dufosse, L., Galaup, P., Yarnon, A., et al. (2005). Microorganisms and microalgae as source of pigments for use: A scientific oddity or an industrial reality? Trends in Food Science and Technology, 16, 389–406.

    CrossRef  CAS  Google Scholar 

  • Faieta, M., Neri, L., Sacchetti, G., Di Michele, A., & Pittia, P. (2020). Role of saccharides on thermal stability of phycocyanin in aqueous solutions. Food Research International, 132, 109093.

    CrossRef  CAS  Google Scholar 

  • Fernandez-Rojas, B., Hernandez-Juarez, J., & Pedraza-Chaverri, J. (2014). Nutraceutical properties of phycocyanin. Journal of Functional Foods, 11, 375–392.

    CrossRef  CAS  Google Scholar 

  • Ferraro, G., Imbimbo, P., Marseglia, A., Lucignano, R., Monti, D. M., & Merlino, A. (2020). X-ray structure of C-phycocyanin from Galdieria phlegrea: Determinants of thermostability and comparison with a C-phycocyanin in the entire phycobilisome. Biochimica et Biophysica Acta - Bioenergetics, 1861(9), 148236.

    CrossRef  CAS  Google Scholar 

  • Furuki, T., Maeda, S., Hirokawa, T., Ito, K., Majo, S., Hiroi, T., & Nozawa, H. (2003). Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. Journal of Applied Phycology, 15, 319–324.

    CrossRef  CAS  Google Scholar 

  • Ge, B., Tang, Z., Zhao, F., Ren, Y., Yang, Y., & Qin, S. (2005). Scale-up of fermentation and purification of recombinant allophycocyanin over-expressed in Escherichia coli. Process Biochemistry, 40, 3190–3195.

    CrossRef  CAS  Google Scholar 

  • Gittelson, A., Quiang, H., & Richmond, A. (1996). Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensis. Applied and Environmental Microbiology, 62, 1570–1573.

    CrossRef  Google Scholar 

  • Grobbelaar, J. U. (2007). Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: What do the organisms tell us? Journal of Applied Phycology, 19, 591–598.

    CrossRef  CAS  Google Scholar 

  • Guan, X., Qin, S., Su, Z., Shao, F., Ge, B., Li, F., & Tang, X. (2007). Combinational biosynthesis of a fluorescent cyanobacterial holoa-phycocyanin in Escherichia coli by using one expression vector. Applied Biochemistry and Biotechnology, 142, 52–59.

    CrossRef  CAS  Google Scholar 

  • Hemlata, A., Pandey, G., Bano, F., & Fatma, T. (2011). Studies on Anabaena sp. NCCU-9 with special reference to phycocyanin. Journal of Algal Biomass Utilization, 2, 30–51.

    Google Scholar 

  • Ilter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70, 78–88.

    CrossRef  CAS  Google Scholar 

  • Jaeschke, D. P., Mercali, G. D., Marczak, L. D. F., Müller, G., Frey, W., & Gusbeth, C. (2019). Extraction of valuable compounds from Arthrospira platensis using pulsed electric field treatment. Bioresource Technology, 283, 207–212.

    CrossRef  CAS  Google Scholar 

  • Jespersen, L., Strømdahl, L. D., Olsen, K., & Skibsted, L. H. (2005). Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3–4), 261–266.

    CrossRef  CAS  Google Scholar 

  • Jiménez, C., Cossío, B. R., Labella, D., & Niell, F. X. (2003). The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture, 217, 179–190.

    CrossRef  Google Scholar 

  • Kamble, S. P., Gaikar, R. B., & Padalia, R. B. (2012). Extraction and purification of C-phycocyanin from dry Spirulina and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. Asian Pacific Journal of Tropical Biomedicine, 1, 14.

    Google Scholar 

  • Kent, M., Welladsen, H. M., Mangott, A., & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One, 10(2), e0118985.

    CrossRef  Google Scholar 

  • Liu, H., Zhang, H., Niedzwiedzki, D. M., Prado, M., He, G., Gross, M. L., & Blankenship, R. E. (2013). Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science, 342(6162), 1104–1107.

    CrossRef  CAS  Google Scholar 

  • MacColl, R., Berns, D. S., & Koven, N. L. (1971). Effect of salts on C-phycocyanin. Archives of Biochemistry and Biophysics, 146, 477–482.

    CrossRef  CAS  Google Scholar 

  • Madhyastha, H. K., Radha, K. S., Sugiki, M., Omura, S., & Maruyama, M. (2006). C-phycocyanin transcriptionally regulates uPA mRNA through cAMP mediated PKA pathway in human fibroblast WI-38 cells. Biochimica et Biophysica Acta, 1760, 1624–1630.

    CrossRef  CAS  Google Scholar 

  • Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., & Jing, K. (2016). Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal, 109, 282–296.

    CrossRef  CAS  Google Scholar 

  • Marquez, F. J., Sasaki, K., Kakizono, T., Nishio, N., & Nagai, S. (1993). Growth characterization of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering, 76, 408–410.

    CrossRef  CAS  Google Scholar 

  • Minkova, K., Tchorbadjieva, M., Tchernov, A., Stojanova, M., Gigova, L., & Busheva, M. (2007). Improved procedure for separation and purification of Arthronema africanum phycobiliproteins. Biotechnology Letters, 29, 647–651.

    CrossRef  CAS  Google Scholar 

  • Minkova, K. M., Tchernov, A. A., Tchorbadjieva, M. I., Fournadjieva, S. T., Antova, R. E., & Busheva, M. C. H. (2003). Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. Journal of Biotechnology, 102, 55–59.

    CrossRef  CAS  Google Scholar 

  • Mishra, S. K., Shrivastav, A., & Mishra, S. (2008). Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochemistry, 43(4), 339–345.

    CrossRef  CAS  Google Scholar 

  • Morisset, W., & Kremer, B. P. (1984). Phycobiliproteins -characterization of coloured algal proteins by a simple eectrophoretic procedure. Biochemical Education, 12, 178–180.

    CrossRef  CAS  Google Scholar 

  • Mühling, M., Belay, A., & Whitton, B. A. (2005). Screening Arthrospira (Spirulina) stains for heterotrophy. Journal of Applied Phycology, 17, 129–135.

    CrossRef  Google Scholar 

  • Munawaroh, H. S. H., Gumilar, G. G., Alifia, C. R., Marthania, M., Stellasary, B., Yuliani, G., & Show, P.-L. (2020). Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochemistry, 94, 297–304.

    CrossRef  CAS  Google Scholar 

  • Narala, R. R., Garg, S., Sharma, K. K., Thomas-Hall, S. R., Deme, M., & Li, Y. (2016). Comparison of microalgae cultivation in photobioreactor, open raceway pond and a two-stage hybrid system. Frontiers in Energy Research, 4, 29.

    CrossRef  Google Scholar 

  • Niels, T. E. (2008). Production of phyocyanin-a pigment with its applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80, 1–14.

    CrossRef  Google Scholar 

  • Pan-utai, W., & Iamtham, S. (2019). Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry, 82, 189–198.

    CrossRef  CAS  Google Scholar 

  • Patil, G., & Raghavarao, K. S. M. S. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34, 156–164.

    CrossRef  CAS  Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.

    CrossRef  CAS  Google Scholar 

  • Ramos, A., Acien, F. G., Fernandez-Sevilla, J. M., Gonzalez, C. V., & Bermejo, R. (2010). Large-scale isolation and purification of C-phycocyanin from the cyanobacteria Anabaena marina using expanded bed adsorption chromatography. Journal of Chemical Technology and Biotechnology, 85, 783–792.

    CrossRef  CAS  Google Scholar 

  • Reis, A., Mendes, A., & Fernandes, H. L. (1998). Production, extraction and purification of phycobiliproteins from Nostoc sp. Bioresource Technology, 66, 181–187.

    CrossRef  CAS  Google Scholar 

  • Richa, A., Vinod, K., Kannaujiya, M. K., Singh, G., Rajeshwar, P., & Sinha, A. (2011). Biotechnological potentials of phycobiliproteins. International Journal of Pharma and Bio Sciences, 2(4), 446–454.

    CAS  Google Scholar 

  • Richmond, A., & Grobbelaar, J. U. (1986). Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass, 10, 253–264.

    CrossRef  Google Scholar 

  • Richmond, A., Lichtenberger, E., Stahl, B., & Vonshak, A. (1990). Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. Journal of Applied Phycology, 2, 195–206.

    CrossRef  Google Scholar 

  • Santiago-Santos, M. C., Ponce-Noyola, T., Olvera-Ramirez, R., Ortega-Lopez, J., & Canizares-Villanueva, R. O. (2004). Extraction and purification of phycocyanin from Calothrix sp. Process Biochemistry, 39, 2047–2052.

    CrossRef  CAS  Google Scholar 

  • Sarada, R., Pillai, M. G., & Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34(8), 795–801.

    CrossRef  CAS  Google Scholar 

  • Selig, M. J., Malchione, N. M., Gamaleldin, S., Padilla-Zakour, O. I., & Abbaspourrad, A. (2018). Protection of blue color in a spirulina derived phycocyanin extract from proteolytic and thermal degradation via complexation with beet-pectin. Food Hydrocolloids, 74, 46–52.

    CrossRef  CAS  Google Scholar 

  • Silva, L. A., Kuhn, K. R., Moraes, C. C., Burkert, C. A. V., & Kalil, S. J. (2009). Experimental design as a tool for optimization of C-Phycocyanin purification by precipitation from Spirulina platensis. Journal of the Brazilian Chemical Society, 20, 5–12.

    CrossRef  CAS  Google Scholar 

  • Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V., & Kalil, S. J. (2007). Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98(8), 1629–1163.

    CrossRef  CAS  Google Scholar 

  • Soni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99, 188–194.

    CrossRef  CAS  Google Scholar 

  • Spolaore, P., Joannis-Cassa, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    CrossRef  CAS  Google Scholar 

  • Stanic-Vucinic, D., Minic, S., Nikolic, M. R., & Velickovic, T. C. (2018). Spirulina phycobiliproteins as food components and complements. In E. Jacob-Lopez (Ed.), Microalgal biotechnology (pp. 129–149). InTech Open.

    Google Scholar 

  • Stewart, D. E., & Farmer, F. H. (1984). Extraction, identification and quantification of phycobiliprotein pigments from phototrophic plankton. Limnology and Oceanography, 29, 392–397.

    CrossRef  CAS  Google Scholar 

  • Su, C. H., Liu, C. S., Yang, P. C., Syu, K. S., & Chiuh, C. C. (2014). Solid-liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors. Separation and Purification Technology, 123, 64–68.

    CrossRef  CAS  Google Scholar 

  • Su, Z., He, D., Qian, K., Zhao, F., Meng, C., & Qin, S. (2006). The recombination and expression of the allophycocyanin beta subunit gene in the chloroplast of Chlamydomonas reinhardtii. World Journal of Microbiology and Biotechnology, 22, 101–103.

    CrossRef  CAS  Google Scholar 

  • Sun, L., Wang, S., Gong, X., Zhao, M., Fu, X., & Lang, W. (2009). Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expression and Purification, 64, 146–154.

    CrossRef  CAS  Google Scholar 

  • Sun, L., Wang, S., & Qiao, Z. (2006). Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. Journal of Biotechnology, 121(4), 563–569.

    CrossRef  CAS  Google Scholar 

  • Tavanandi, H. A., Mittal, R., Chandrasekhar, J., & Raghavarao, K. S. M. S. (2018). Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal Research, 31, 239–251.

    CrossRef  Google Scholar 

  • Tavanandi, H. A., & Raghavarao, K. S. M. S. (2020). Ultrasound-assisted enzymatic extraction of natural food colorant C-Phycocyanin from dry biomass of Arthrospira platensis. LWT, 118, 6438.

    CrossRef  Google Scholar 

  • Tooley, A. J., Cai, Y. A., & Glazer, A. N. (2001). Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-a subunit in a heterologous host. Proceedings of the National Academy of Sciences of the United States of America, 98, 10560–10565.

    CrossRef  CAS  Google Scholar 

  • Viskari, P. J., & Colyer, C. L. (2003). Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Analytical Biochemistry, 319, 263–271.

    CrossRef  CAS  Google Scholar 

  • Wang, H., Liu, Y., Gao, X., Carter, C. L., & Liu, Z.-R. (2007). The recombinant b subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Letters, 247, 150–158.

    CrossRef  CAS  Google Scholar 

  • Wu, H. L. L., Wang, G.-H. H., Xiang, W.-Z. Z., Li, T., & He, H. (2016). Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. International Journal of Food Properties, 19(10), 2349–2362.

    CrossRef  CAS  Google Scholar 

  • Yang, Y., Ge, B., Guan, X., Zhang, W., & Qin, S. (2008). Combinatorial biosynthesis of a fluorescent cyanobacterial holo-a-allophycocyanin in Escherichia coli. Biotechnology Letters, 30, 1001–1004.

    CrossRef  CAS  Google Scholar 

  • Zhang, Z., Li, Y., & Abbaspourrad, A. (2020). Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions. Food Hydrocolloids, 105(1), 105747.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nazar, R., Yousuff, M.I.M., Nooruddin, T., Dharumadurai, D. (2023). Small-scale Production and Business Plan for Phycocyanin from Cyanobacteria. In: Amaresan, N., Dharumadurai, D., Babalola, O.O. (eds) Food Microbiology Based Entrepreneurship. Springer, Singapore. https://doi.org/10.1007/978-981-19-5041-4_14

Download citation