Skip to main content

Production, Cost Analysis, and Marketing of Livestock and Poultry Probiotic

  • Chapter
  • First Online:
Food Microbiology Based Entrepreneurship

Abstract

The gastrointestinal (GI) tract of livestock and poultry animal is a complex ecosystem of microbes which interacts with feed nutrients and cells of the recipient animal. Poultry and meat animal plays an integral role in maintaining the economic stability in developing countries. Because of several unwanted impacts on animal growth and animal originated food products, the utilization of antibiotics as growth promoter has been restricted in animal and poultry farming in many countries across the globe. Along with the extensive farming needs, breeders are concerned and interested with non-toxic and cheaper feed supplement as functional food to accelerate the maturation and development of highly nutritious animal products. Probiotics/live microorganisms have emerged as non-invasive tool for increasing performance in poultry and livestock animals. In the view of this, the present book chapter deals with types of feed additives, cost effectiveness, production, and market potential of probiotics used in animal farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Hack, M. E., El-Saadony, M. T., Shafi, M. E., Qattan, S. Y., Batiha, G. E., Khafaga, A. F., & Alagawany, M. (2020). Probiotics in poultry feed: A comprehensive review. Journal of Animal Physiology and Animal Nutrition, 104(6), 1835–1850.

    Article  CAS  Google Scholar 

  • Abdel-Rahman, H. A., Shawky, S. M., Ouda, H., Nafeaa, A. A., & Orabi, S. H. (2013). Effect of two probiotics and biofavonoids supplementation to the broilers diet and drinking water on the growth performance and hepatic antioxidant parameters. Global Veterinarians. https://doi.org/10.5829/idosi.gv.2013.10.6.7459

  • Abou-Kassem, D. E., Elsadek, M. F., Abdel-Moneim, A. E., Mahgoub, S. A., Elaraby, G. M., Taha, A. E., & Ashour, E. A. (2021). Growth, carcass characteristics, meat quality, and microbial aspects of growing quail fed diets enriched with two different types of probiotics (Bacillus toyonensis and Bifidobacterium bifidum). Poultry Science, 100(1), 84–93.

    Article  CAS  Google Scholar 

  • Afsharmanesh, M., & Sadaghi, B. (2014). Effects of dietary alternatives (probiotic, green tea powder, and Kombucha tea) as antimicrobial growth promoters on growth, ileal nutrient digestibility, blood parameters, and immune response of broiler chickens. Comparative Clinical Pathology, 23(3), 717–724.

    Article  CAS  Google Scholar 

  • Ali, M., Kakar, K. U., Kakar, N., & Mustafa, M. Z. (2021). Probiotic production from Bacillus Subtilis and its effect on broiler growth performance. Pak-Euro Journal of Medical and Life Sciences, 4(3), 81–86.

    Google Scholar 

  • Anadón, A., Martínez-Larrañaga, M. R., & Martínez, M. A. (2006). Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology, 45(1), 91–95.

    Article  Google Scholar 

  • Bai, S. P., Wu, A. M., Ding, X. M., Lei, Y., Bai, J., Zhang, K. Y., & Chio, J. S. (2013). Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poultry Science, 92(3), 663–670.

    Article  CAS  Google Scholar 

  • Barba-Vidal, E., Martín-Orúe, S. M., & Castillejos, L. (2019). Practical aspects of the use of probiotics in pig production: A review. Livestock Science, 223, 84–96.

    Article  Google Scholar 

  • Beauchemin, K. A., Krehbiel, C. R., & Newbold, C. J. (2006). Enzymes, bacterial direct-fed microbials and yeast: Principles for use in ruminant nutrition. In Biology of growing animals (Vol. 4, pp. 251–284). Elsevier.

    Chapter  Google Scholar 

  • Biloni, A., Quintana, C. F., Menconi, A., Kallapura, G., Latorre, J., Pixley, C., Layton, S., Dalmagro, M., Hernandez-Velasco, X., Wolfenden, A., Hargis, B. M., & Tellez, G. (2013). Evaluation of efects of EarlyBird associated with FloraMax-B11 on Salmonella enteritidis, intestinal morphology, and performance of broiler chickens. Poultry Science. https://doi.org/10.3382/ps.2013-03279

  • Böhmer, B. M., Kramer, W., & Roth-Maier, D. A. (2006). Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows. Journal of Animal Physiology and Animal Nutrition, 90(7-8), 309–315.

    Article  Google Scholar 

  • Cetin, N., Güçlü, B. K., & Cetin, E. (2005). The effects of probiotic and mannanoligosaccharide on some haematological and immunological parameters in turkeys. Journal of Veterinary Medicine Series A, 52(6), 263–267.

    Article  CAS  Google Scholar 

  • Chaves, B. D., Brashears, M. M., & Nightingale, K. K. (2017). Applications and safety considerations of Lactobacillus salivarius as a probiotic in animal and human health. Journal of Applied Microbiology, 123(1), 18–28.

    Article  CAS  Google Scholar 

  • Corcionivoschi, N., Drinceanu, D., Pop, I. M., Stack, D., Åžtef, L., Julean, C., & Bourke, B. (2010). The effect of probiotics on animal health. Scientific Papers Animal Science and Biotechnologies, 43(1), 35–41.

    Google Scholar 

  • Corr, S. C., Li, Y., Riedel, C. U., Toole, P. W., Hill, C., & Gahan, C. G. (2007). From the cover: Bacteriocin production as a mechanism for the antiinfective activity of bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus Salivarius UCC118. Proceedings of the National Academy of Sciences, 104, 7617–7621.

    Article  CAS  Google Scholar 

  • Dankowiakowska, A., KozÅ‚owska, I., & Bednarczyk, M. (2013). Probiotics, prebiotics and snybiotics in Poultry–mode of action, limitation, and achievements. Journal of Central European Agriculture, 14(1), 467–478.

    Article  Google Scholar 

  • Dehority, B. A. (2003). Numbers, factors affecting the population and distribution of rumen bacteria. Rumen Microbiology, 2003, 265–294.

    Google Scholar 

  • El-Ansary, A. I. (2006). Marketing strategy: Taxonomy and frameworks. European Business Review, 18, 4.

    Article  Google Scholar 

  • El-Sharkawy, H., Tahoun, A., Rizk, A. M., Suzuki, T., Elmonir, W., Nassef, E., & Mahmoud, A. M. (2020). Evaluation of Bifidobacteria and Lactobacillus Probiotics as alternative therapy for Salmonella typhimurium infection in broiler chickens. Animals, 10(6), 1023.

    Article  Google Scholar 

  • Encinas, C. M. A., Villalobos, G. V., Viveros, J. D., Flores, G. C., Almora, E. A., & Rangel, F. C. (2018). Animal performance and nutrient digestibility of feedlot steers fed a diet supplemented with a mixture of direct-fed microbials and digestive enzymes. Revista Brasileira de Zootecnia, 47, 121.

    Article  Google Scholar 

  • Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69, 68–76.

    Article  CAS  Google Scholar 

  • Fazelnia, K., Fakhraei, J., Yarahmadi, H. M., & Amini, K. (2021). Dietary supplementation of potential probiotics Bacillus subtilis, Bacillus licheniformis, and Saccharomyces cerevisiae and Synbiotic improves growth performance and immune responses by modulation in intestinal system in broiler chicks challenged with salmonella typhimurium. Probiotics and Antimicrobial Proteins, 2021, 1–12.

    Google Scholar 

  • Fesseha, H. (2019). Probiotics and its potential role in poultry production: A review. Veterinary Medicine - Open Journal, 4(2), 69–76.

    Article  Google Scholar 

  • Fior Markets. (2020). Animal feed additives market by type (antibiotics, minerals, binders, vitamins, feed enzymes, feed acidifiers, antioxidants, amino acids), livestock (aquatic animals, ruminants, poultry, swine), form (liquid, dry), region, global industry analysis, market size, share, growth, trends, and forecast 2020 to 2027. Retrieved from https://www.fiormarkets.com/report/animal-feed-additivesmarket-by-type-antibiotics-minerals-418379.html

  • Foligné, B., Daniel, C., & Pot, B. (2013). Probiotics from research to market: The possibilities, risks and challenges. Current Opinion in Microbiology, 16(3), 284–292.

    Article  Google Scholar 

  • Ghareeb, K., Awad, W. A., Mohnl, M., Porta, R., Biarnes, M., Böhm, J., & Schatzmayr, G. (2012). Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens. Poultry Science, 91(8), 1825–1832.

    Article  CAS  Google Scholar 

  • Gleam, F. (2018). Global livestock environmental assessment model.

    Google Scholar 

  • Gomes, A. M., Malcata, F. X., & Klaver, F. A. (1998). Growth enhancement of Bifidobacterium lactis Bo and Lactobacillus acidophilus Ki by milk hydrolyzates. Journal of Dairy Science, 81(11), 2817–2825.

    Article  CAS  Google Scholar 

  • Guan, L. L., Nkrumah, J. D., Basarab, J. A., & Moore, S. S. (2008). Linkage of microbial ecology to phenotype: Correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiology Letters, 288(1), 85–91.

    Article  CAS  Google Scholar 

  • Haddadin, M. S. Y., Abdulrahim, S. M., Hashlamoun, E. A. R., & Robinson, R. K. (1996). The effect of Lactobacillus acidophilus on the production and chemical composition of hen’s eggs. Poultry Science, 75(4), 491–494.

    Article  CAS  Google Scholar 

  • Hameed, H. (2021). Feed additives in poultry. Assiut Veterinary Medical Journal, 67(168), 87–100.

    Article  Google Scholar 

  • Hardy, H., Harris, J., Lyon, E., Beal, J., & Foey, A. D. (2013). Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology. Nutrients, 5(6), 1869–1912.

    Article  CAS  Google Scholar 

  • Hempel, S., Newberry, S., Ruelaz, A., Wang, Z., Miles, J. N., Suttorp, M. J., & Shekelle, P. G. (2011). Safety of probiotics used to reduce risk and prevent or treat disease. Evidence Report/Technology Assessment, 200, 1–645.

    Google Scholar 

  • Hmidet, N., Ali, N. E. H., Haddar, A., Kanoun, S., Alya, S. K., & Nasri, M. (2009). Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal, 47(1-3), 71–79.

    Article  CAS  Google Scholar 

  • Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Science, 92(2), 370–374.

    Article  CAS  Google Scholar 

  • Jiang, T., Li, H. S., Han, G. G., Singh, B., Kang, S. K., Bok, J. D., & Cho, C. S. (2017). Oral delivery of probiotics in poultry using pH-sensitive tablets. Journal of Microbiology and Biotechnology, 27(4), 739–746.

    Article  CAS  Google Scholar 

  • Johnson-Henry, K. C., Nadjafi, M., Avitzur, Y., Mitchell, D. J., Ngan, B. Y., Galindo-Mata, E., & Sherman, P. M. (2005). Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. Journal of Infectious Diseases, 191(12), 2106–2117.

    Article  Google Scholar 

  • Jukna, V., & Å imkus, A. (2005). The effect of probiotics and phytobiotics on meat properties and quality in pigs. Veterinarija ir zootechnika, 29, 51.

    Google Scholar 

  • Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: A review. International Scholarly Research Notices, 2013, 481651.

    Google Scholar 

  • Khan, R. U., & Naz, S. (2013). The applications of probiotics in poultry production. World’s Poultry Science Journal, 69(3), 621–632.

    Article  Google Scholar 

  • Kritas, S. K., Govaris, A., Christodoulopoulos, G., & Burriel, A. R. (2006). Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe’s feed on sheep milk production and young lamb mortality. Journal of Veterinary Medicine Series A, 53(4), 170–173.

    Article  CAS  Google Scholar 

  • Kurtoglu, V., Kurtoglu, F., Seker, E., Coskun, B., Balevi, T., & Polat, E. S. (2004). Effect of probiotic supplementation on laying hen diets on yield performance and serum and egg yolk cholesterol. Food Additives and Contaminants, 21(9), 817–823.

    Article  CAS  Google Scholar 

  • Lacroix, C., & Yildirim, S. (2007). Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology, 18(2), 176–183.

    Article  CAS  Google Scholar 

  • Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M. E., Chi, F., Cravens, R. L., & Gay, C. G. (2018). Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 49(1), 1–18.

    Article  Google Scholar 

  • Luongo, D., Miyamoto, J., Bergamo, P., Nazzaro, F., Baruzzi, F., Sashihara, T., & Rossi, M. (2013). Differential modulation of innate immunity in vitro by probiotic strains of Lactobacillus gasseri. BMC Microbiology, 13(1), 1–12.

    Article  Google Scholar 

  • Maldonado, N. C., Ficoseco, C. A., Mansilla, F. I., Melián, C., Hébert, E. M., Vignolo, G. M., & Nader-Macías, M. E. F. (2018). Identification, characterization and selection of autochthonous lactic acid bacteria as probiotic for feedlot cattle. Livestock Science, 212, 99–110.

    Article  Google Scholar 

  • Mallick, P., Muduli, K., Biswal, J. N., & Pumwa, J. (2020). Broiler poultry feed cost optimization using linear programming technique. Journal of Operations and Strategic Planning, 3(1), 31–57.

    Article  Google Scholar 

  • Marteau, P., & Boutron-Ruault, M. C. (2002). Nutritional advantages of probiotics and prebiotics. British Journal of Nutrition, 87(2), 153–157.

    Article  Google Scholar 

  • Maurya, P., Mogra, R., & Bajpai, P. (2014). Probiotics: An approach towards health and disease. Trends BioScience, 7(20), 3107–3113.

    Google Scholar 

  • McDonald, P. (2010). Animal Nutrition, 7, 461–477.

    Google Scholar 

  • Meunier, M., Chemaly, M., & Dory, D. (2016). DNA vaccination of poultry: The current status in 2015. Vaccine, 34(2), 202–211.

    Article  CAS  Google Scholar 

  • Millen, D. D., Pacheco, R. D. L., da Silva Cabral, L., Cursino, L. L., Watanabe, D. H. M., & Rigueiro, A. L. N. (2016). Ruminal acidosis. In Rumenology (pp. 127–156). Springer.

    Chapter  Google Scholar 

  • Mohammed, A. A., Zaki, R. S., Negm, E. A., Mahmoud, M. A., & Cheng, H. W. (2021). Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poultry Science, 100(3), 100906.

    Article  CAS  Google Scholar 

  • Mookiah, S., Sieo, C. C., Ramasamy, K., Abdullah, N., & Ho, Y. W. (2014). Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. Journal of the Science of Food and Agriculture, 94(2), 341–348.

    Article  CAS  Google Scholar 

  • Mordor Intelligence. (2020). Australia feed additives market: Growth, trends, COVID-19 impact, and forecasts (2021–2026). Retrieved from www.mordorintelligence.com/industry-reports/australia-feed-additivesmarket-industry

  • Morgan, N. A., Whitler, K. A., Feng, H., & Chari, S. (2019). Research in marketing strategy. Journal of the Academy of Marketing Science, 47(1), 4–29.

    Article  Google Scholar 

  • Morishita, T. Y., Aye, P. P., Harr, B. S., Cobb, C. W., & Clifford, J. R. (1997). Evaluation of an avian-specific probiotic to reduce the colonization and shedding of Campylobacter jejuni in broilers. Avian Diseases, 41, 850–855.

    Article  CAS  Google Scholar 

  • Myer, P. R., Smith, T. P., Wells, J. E., Kuehn, L. A., & Freetly, H. C. (2015). Rumen microbiome from steers differing in feed efficiency. PLoS One, 10(6), e0129174.

    Article  Google Scholar 

  • Nagaraja, T. G. (2016). Microbiology of the rumen. In Rumenology (pp. 39–61). Springer.

    Chapter  Google Scholar 

  • Nandi, A., Dan, S. K., Banerjee, G., Ghosh, P., Ghosh, K., Ringø, E., & Ray, A. K. (2017). Probiotic potential of autochthonous bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Probiotics and Antimicrobial Proteins, 9(1), 12–21.

    Article  Google Scholar 

  • Nocek, J. E., & Kautz, W. P. (2006). Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre-and postpartum dairy cattle. Journal of Dairy Science, 89(1), 260–266.

    Article  CAS  Google Scholar 

  • Ogawa, M., Shimizu, K., Nomoto, K., Takahashi, M., Watanuki, M., Tanaka, R., & Takeda, Y. (2001). Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157: H7 infection in infant rabbits. Infection and Immunity, 69(2), 1101–1108.

    Article  CAS  Google Scholar 

  • Otim, M. O., Mukiibi-Muka, G., Christensen, H., & Bisgaard, M. (2005). Aflatoxicosis, infectious bursal disease and immune response to Newcastle disease vaccination in rural chickens. Avian Pathology, 34(4), 319–323.

    Article  Google Scholar 

  • Park, Y. H., Hamidon, F., Rajangan, C., Soh, K. P., Gan, C. Y., Lim, T. S., & Liong, M. T. (2016). Application of probiotics for the production of safe and high-quality poultry meat. Korean Journal for Food Science of Animal Resources, 36(5), 567.

    Article  Google Scholar 

  • Patel, A. K., Singhania, R. R., & Pandey, A. (2017). Production, purification, and application of microbial enzymes. In Biotechnology of microbial enzymes (pp. 13–41). Academic Press.

    Chapter  Google Scholar 

  • Perea, K., Perz, K., Olivo, S. K., Williams, A., Lachman, M., Ishaq, S. L., Thomson, J., & Yeoman, C. J. (2017). Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. Journal of Animal Science, 95(6), 2585–2592.

    CAS  Google Scholar 

  • Perez-Cano, F. J., Dong, H., & Yaqoob, P. (2010). In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: Two probiotic strains isolated from human breast milk. Immunobiology, 215(12), 996–1004.

    Article  CAS  Google Scholar 

  • Puniya, A. K., & Singh, R. (2015). In D. N. Kamra (Ed.), Rumen microbiology: From evolution to revolution (pp. 97–177). Springer.

    Chapter  Google Scholar 

  • Ray, B. C., Chowdhury, S. D., & Khatun, A. (2019). Productive performance and cost effectiveness of broiler using three different probiotics in the diet. Bangladesh Journal of Animal Science, 48(2), 85–91.

    Article  Google Scholar 

  • Saint-Cyr, M. J., Guyard-Nicodème, M., Messaoudi, S., Chemaly, M., Cappelier, J. M., Dousset, X., & Haddad, N. (2016). Recent advances in screening of anti-campylobacter activity in probiotics for use in poultry. Frontiers in Microbiology, 7, 553.

    Article  Google Scholar 

  • Scharek, L., Guth, J., Filter, M., & Schmidt, M. F. (2007). Impact of the probiotic bacteria Enterococcus faecium NCIMB 10415 (SF68) and Bacillus cereus var. toyoi NCIMB 40112 on the development of serum IgG and faecal IgA of sows and their piglets. Archives of Animal Nutrition, 61(4), 223–234.

    Article  CAS  Google Scholar 

  • Seghouani, H., Garcia-Rangel, C. E., Füller, J., Gauthier, J., & Derome, N. (2017). Walleye autochthonous bacteria as promising probiotic candidates against Flavobacterium columnare. Frontiers in Microbiology, 8, 1349.

    Article  Google Scholar 

  • Seo, J. K., Kim, S. W., Kim, M. H., Upadhaya, S. D., Kam, D. K., & Ha, J. K. (2010). Direct-fed microbials for ruminant animals. Asian-Australasian Journal of Animal Sciences, 23(12), 1657–1667.

    Article  Google Scholar 

  • Shu, Q., Lin, H., Rutherfurd, K. J., Fenwick, S. G., Prasad, J., Gopal, P. K., & Gill, H. S. (2000). Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice. Microbiology and Immunology, 44(3), 213–222.

    Article  CAS  Google Scholar 

  • Sohail, M. U., Ijaz, A., Yousaf, M. S., Ashraf, K., Zaneb, H., Aleem, M., & Rehman, H. (2010). Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poultry Science, 89(9), 1934–1938.

    Article  CAS  Google Scholar 

  • Sokale, A. O., Menconi, A., Mathis, G. F., Lumpkins, B., Sims, M. D., Whelan, R. A., & Doranalli, K. (2019). Effect of Bacillus subtilis DSM 32315 on the intestinal structural integrity and growth performance of broiler chickens under necrotic enteritis challenge. Poultry Science, 98(11), 5392–5400.

    Article  CAS  Google Scholar 

  • Stern, N. J., Cox, N. A., Bailey, J. S., Berrang, M. E., & Musgrove, M. T. (2001). Comparison of mucosal competitive exclusion and competitive exclusion treatment to reduce Salmonella and Campylobacter spp. colonization in broiler chickens. Poultry Science, 80(2), 156–160.

    Article  CAS  Google Scholar 

  • Tanguler, H., & Erten, H. (2008). Utilisation of spent Brewer’s yeast for yeast extract production by autolysis: The effect of temperature. Food and Bioproducts Processing, 86(4), 317–321.

    Article  Google Scholar 

  • Tarus, J. K., Rachuonyo, H. A., Omega, J. A., & Ochuodho, J. O. (2019). Assessment of aflatoxin levels in indigenous chicken tissues and eggs in Western Kenya. African Journal of Education, Science and Technology, 5(3), 59–65.

    Google Scholar 

  • Thirumalaisamy, G., Muralidharan, J., Senthilkumar, S., Hema Sayee, R., & Priyadharsini, M. (2016). Cost-effective feeding of poultry. International Journal of Science, Environment and Technology, 5(6), 3997–4005.

    Google Scholar 

  • Thompson, A. J., Smith, Z. K. F., Corbin, M. J., Harper, L. B., & Johnson, B. J. (2016). Ionophore strategy affects growth performance and carcass characteristics in feedlot steers. Journal of Animal Science, 94(12), 5341–5349.

    Article  CAS  Google Scholar 

  • Trabelsi, I., Slima, S. B., Ktari, N., Triki, M., Abdehedi, R., Abaza, W., Moussa, H., Abdeslam, A., & Salah, R. B. (2019). Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science, 154, 29–36.

    Article  CAS  Google Scholar 

  • Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365, 6459.

    Google Scholar 

  • Van Wagenberg, C. P. A., & Van Horne, P. L. M. (2016). Impact of technical and economic performance on costs of Campylobacter spp. interventions on broiler farms in six European countries. Microbial Risk Analysis, 2, 38–47.

    Article  Google Scholar 

  • Walter, J., Maldonado-Gómez, M. X., & Martínez, I. (2018). To engraft or not to engraft: An ecological framework for gut microbiome modulation with live microbes. Current Opinion in Biotechnology, 49, 129–139.

    Article  CAS  Google Scholar 

  • Yang, X., Zhang, B., Guo, Y., Jiao, P., & Long, F. (2010). Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poultry Science, 89(2), 254–260.

    Article  CAS  Google Scholar 

  • Yeoman, C. J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N. D., & White, B. A. (2012). The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews, 13(1), 89–99.

    Article  Google Scholar 

  • Yousef, A. E., & Juneja, V. K. (2002). Microbial stress adaptation and food safety. CRC Press.

    Book  Google Scholar 

  • Yu, P., Huber, J. T., Theurer, C. B., Chen, K. H., Nussio, L. G., & Wu, Z. (1997). Effect of steam-flaked or steam-rolled corn with or without Aspergillus oryzae in the diet on performance of dairy cows fed during hot weather. Journal of Dairy Science, 80(12), 3293–3297.

    Article  CAS  Google Scholar 

  • Yunus, A. A. (2017). Effect of probiotic (RE3) supplement on growth performance, diarrhea incidence and blood parameters of N’dama calves (Doctoral dissertation).

    Google Scholar 

  • Muller, J. A., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2009). Manufacture of probiotic bacteria. In D. Charalampopoulos & R. A. Rastall (Eds.), Prebiotics and probiotics science and technology. Springer. https://doi.org/10.1007/978-0-387-79058-9_18

    Chapter  Google Scholar 

  • Zamojska, D., Nowak, A., Nowak, I., & MacierzyÅ„ska-Piotrowska, E. (2021). Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review. Animals, 11(12), 3431.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Borase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, N., Borase, H., Belewu, M.A., Krishnamurthy, R. (2023). Production, Cost Analysis, and Marketing of Livestock and Poultry Probiotic. In: Amaresan, N., Dharumadurai, D., Babalola, O.O. (eds) Food Microbiology Based Entrepreneurship. Springer, Singapore. https://doi.org/10.1007/978-981-19-5041-4_13

Download citation

Publish with us

Policies and ethics