Skip to main content

Fractional Anisotropy: Scalar Derivative of Diffusion-Tensor Imaging

  • Chapter
  • First Online:
Diffusion Tensor Imaging and Fractional Anisotropy

Abstract

The previous chapter briefly described the physics behind diffusion anisotropy and diffusion-tensor imaging. The current chapter throws light on the most important scalar derivative of DTI, i.e. fractional anisotropy and its clinical utility on the brain white matter. The evidence on factors affecting FA values and normative FA have been outlined in-depth as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36(6):893–906. http://www.ncbi.nlm.nih.gov/pubmed/8946355.

    Article  CAS  PubMed  Google Scholar 

  2. Papadakis NG, Xing D, Houston GC, Smith JM, Smith MI, James MF, et al. A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging. 1999;17(6):881–92. http://www.ncbi.nlm.nih.gov/pubmed/10402595.

    Article  CAS  PubMed  Google Scholar 

  3. Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, et al. Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology. 1999;212(3):785–92. http://www.ncbi.nlm.nih.gov/pubmed/10478247.

    Article  CAS  PubMed  Google Scholar 

  4. Yoshiura T, Wu O, Zaheer A, Reese TG, Sorensen AG. Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter. Magn Reson Med. 2001;45(5):734–40. http://www.ncbi.nlm.nih.gov/pubmed/11323798.

    Article  CAS  PubMed  Google Scholar 

  5. Beppu T, Inoue T, Shibata Y, Kurose A, Arai H, Ogasawara K, et al. Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neurooncol. 2003;63(2):109–16. http://www.ncbi.nlm.nih.gov/pubmed/12825815.

    Article  PubMed  Google Scholar 

  6. Basser P, Pierpaoli C. Recollections about our 1996 JMR paper on diffusion anisotropy. J Magn Reson. 2011;213(2):571–2. http://www.ncbi.nlm.nih.gov/pubmed/22152372.

    Article  CAS  PubMed  Google Scholar 

  7. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48. http://www.ncbi.nlm.nih.gov/pubmed/8939209.

    Article  CAS  PubMed  Google Scholar 

  8. Lee CEC, Danielian LE, Thomasson D, Baker EH. Normal regional fractional anisotropy and apparent diffusion coefficient of the brain measured on a 3 T MR scanner. Neuroradiology. 2009;51(1):3–9. http://www.ncbi.nlm.nih.gov/pubmed/18704391.

    Article  PubMed  Google Scholar 

  9. Huisman TAGM, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE, et al. Magnetic resonance. Eur Radiol. 2006;16:1651–8.

    Article  PubMed  Google Scholar 

  10. Huisman TAGM, Bosemani T, Poretti A. Diffusion tensor imaging for brain malformations. Neuroimaging Clin N Am. 2014;24(4):619–37. http://www.sciencedirect.com/science/article/pii/S1052514914000732.

    Article  PubMed  Google Scholar 

  11. Hunsche S, Moseley ME, Stoeter P, Hedehus M. Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology. 2001;221(2):550–6. http://pubs.rsna.org/doi/abs/10.1148/radiol.2212001823.

    Article  CAS  PubMed  Google Scholar 

  12. Snook L, Paulson L-A, Roy D, Phillips L, Beaulieu C. Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage. 2005;26(4):1164–73. http://www.ncbi.nlm.nih.gov/pubmed/15961051.

    Article  PubMed  Google Scholar 

  13. van Norden AGW, de Laat KF, van Dijk EJ, van Uden IWM, van Oudheusden LJB, Gons RAR, et al. Diffusion tensor imaging and cognition in cerebral small vessel disease. Biochim Biophys Acta Mol Basis Dis. 2012;1822(3):401–7. http://www.sciencedirect.com/science/article/pii/S0925443911000913.

    Article  Google Scholar 

  14. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV. Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging. 2010;31(3):482–93. https://linkinghub.elsevier.com/retrieve/pii/S0197458008001401.

    Article  PubMed  Google Scholar 

  15. Treit S, Chen Z, Rasmussen C, Beaulieu C. White matter correlates of cognitive inhibition during development: a diffusion tensor imaging study. Neuroscience. 2014;276:87–97. http://www.sciencedirect.com/science/article/pii/S030645221301035X.

    Article  CAS  PubMed  Google Scholar 

  16. Sexton CE, Walhovd KB, Storsve AB, Tamnes CK, Westlye LT, Johansen-Berg H, et al. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci. 2014;34(46):15425–36. http://www.ncbi.nlm.nih.gov/pubmed/25392509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E. Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J Neuroradiol. 2007;28(2):226–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Paper O. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study. Dev Neurosci. 2015;37(2):182–94.

    Article  Google Scholar 

  19. Jun Q, Irvin Y, Paolo T, Yi M, Carissa S, Kang K. Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies. J Neural Transm (Vienna). 2013;120(9):1369–95.

    Article  Google Scholar 

  20. Zhan L. White matter integrity measured by fractional anisotropy correlates poorly with actual individual fiber anisotropy | Academia.edu. [cited 2014 Jun 27]. https://www.academia.edu/3512971/White_Matter_Integrity_Measured_by_Fractional_Anisotropy_Correlates_Poorly_with_Actual_Individual_Fiber_Anisotropy.

  21. de Bruïne FT, van Wezel-Meijler G, Leijser LM, van den Berg-Huysmans AA, van Steenis A, van Buchem MA, et al. Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants. Eur Radiol. 2011;21(3):538–47. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3032189&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  Google Scholar 

  22. Chang MC, Jang SH. Corpus callosum injury in patients with diffuse axonal injury: a diffusion tensor imaging study. NeuroRehabilitation. 2010;26(4):339–45. http://www.ncbi.nlm.nih.gov/pubmed/20555157.

    Article  PubMed  Google Scholar 

  23. Liu F, Vidarsson L, Winter JD, Tran H, Kassner A. Sex differences in the human corpus callosum microstructure: a combined T2 myelin-water and diffusion tensor magnetic resonance imaging study. Brain Res. 2010;1343:37–45. http://www.ncbi.nlm.nih.gov/pubmed/20435024.

    Article  CAS  PubMed  Google Scholar 

  24. Provenzale JM, Isaacson J, Chen S, Stinnett S, Liu C. Correlation of apparent diffusion coefficient and fractional anisotropy values in the developing infant brain. Am J Roentgenol. 2010;195(6):W456–62. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3640803&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  25. Kim EY, Park H-J, Kim D-H, Lee S-K, Kim J. Measuring fractional anisotropy of the corpus callosum using diffusion tensor imaging: mid-sagittal versus axial imaging planes. Korean J Radiol. 2008;9(5):391–5. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2627217&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sullivan EV, Rohlfing T, Pfefferbaum A. Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Dev Neuropsychol. 2010;35(3):233–56. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2867078&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rutgers DR, Fillard P, Paradot G, Tadié M, Lasjaunias P, Ducreux D. Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(9):1730–5. http://www.ncbi.nlm.nih.gov/pubmed/18617586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huisman TAGM, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE, et al. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol. 2006;16(8):1651–8. http://www.ncbi.nlm.nih.gov/pubmed/16532356.

    Article  PubMed  Google Scholar 

  29. Hasan KM, Gupta RK, Santos RM, Wolinsky JS, Narayana PA. Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J Magn Reson Imaging. 2005;21(6):735–43. http://www.ncbi.nlm.nih.gov/pubmed/15906348.

    Article  PubMed  Google Scholar 

  30. Jeong HK, Lee S-K, Kim DI, Heo JH. The usefulness of fractional anisotropy maps in localization of lacunar infarctions in striatum, internal capsule and thalamus. Neuroradiology. 2005;47(4):267–70. http://www.ncbi.nlm.nih.gov/pubmed/15806429.

    Article  PubMed  Google Scholar 

  31. Hakulinen U, Brander A, Ryymin P, Öhman J, Soimakallio S, Helminen M, et al. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain. BMC Med Imaging. 2012;12:30. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3533516&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chou M, Mori S. Effects of b-value and echo time on magnetic resonance diffusion tensor imaging-derived parameters at 1.5 T: a voxel-wise study. J Med Biol Eng. 2012;33(1):45–50.

    Article  Google Scholar 

  33. Fox RJ, Sakaie K, Lee J-C, Debbins JP, Liu Y, Arnold DL, et al. A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. AJNR Am J Neuroradiol. 2012;33(4):695–700. http://www.ncbi.nlm.nih.gov/pubmed/22173748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murphy ML, Frodl T. Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biol Mood Anxiety Disord. 2011;1(1):3. http://www.biolmoodanxietydisord.com/content/1/1/3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brander A, Kataja A, Saastamoinen A, Ryymin P, Huhtala H, Ohman J, et al. Diffusion tensor imaging of the brain in a healthy adult population: normative values and measurement reproducibility at 3 T and 1.5 T. Acta Radiol. 2010;51(7):800–7. http://informahealthcare.com/doi/abs/10.3109/02841851.2010.495351.

    Article  PubMed  Google Scholar 

  36. Giannelli M, Cosottini M, Michelassi MC, Lazzarotti G, Belmonte G, Bartolozzi C, et al. Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions. J Appl Clin Med Phys. 2009;11(1):2927. http://www.ncbi.nlm.nih.gov/pubmed/20160677.

    PubMed  Google Scholar 

  37. Bisdas S, Bohning DEE, Besenski N, Nicholas JSS, Rumboldt Z. Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3T in healthy subjects: effect of the applied b-value. AJNR Am J Neuroradiol. 2008;29(6):1128–33. http://www.ajnr.org/cgi/doi/10.3174/ajnr.A1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandl CW, Schnack HG, Zwiers MP, Van Der SA. Functional diffusion tensor imaging: measuring task-related fractional anisotropy changes in the human brain along white matter tracts. PLos One. 2008;3(11):e3631.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schlu M, Drescher R, Rexilius J, Lukas C, Hahn HK, Przuntek H, et al. Diffusion tensor imaging-based fractional anisotropy quantification in the corticospinal tract of patients with amyotrophic lateral sclerosis using a probabilistic mixture model. AJNR Am J Neuroradiol. 2007;28(4):724–30.

    Google Scholar 

  40. Farrell JAD, Landman BA, Jones CK, Smith SA, Prince JL, van Zijl PCM, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging. 2007;26(3):756–67. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2862967&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Soriano-Raya JJ, Miralbell J, López-Cancio E, Bargalló N, Arenillas JF, Barrios M, et al. Tract-specific fractional anisotropy predicts cognitive outcome in a community sample of middle-aged participants with white matter lesions. J Cereb Blood Flow Metab. 2014;34(5):861–9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4013764&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Taylor P, Brander A, Kataja A, Saastamoinen A, Ryymin P, Huhtala H. Acta radiologica diffusion tensor imaging of the brain in a healthy adult population: normative values and measurement reproducibility at 3 T and 1.5 T. Acta Radiol. 2010;51(7):800–7.

    Article  Google Scholar 

  43. Giannelli M, Cosottini M, Michelassi MC, Lazzarotti G, Belmonte G, Bartolozzi C, et al. Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions. J Appl Clin Med Phys. 2009;11(1):2927. http://www.jacmp.org/index.php/jacmp/article/view/2927/1797.

    PubMed  Google Scholar 

  44. Zhang Y, Schuff N, Jahng G-H, Bayne W, Mori S, Schad L, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology. 2007;68(1):13–9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1941719&tool=pmcentrez&rendertype=abstract.

    Article  CAS  PubMed  Google Scholar 

  45. Papanikolaou N, Karampekios S, Papadaki E, Malamas M, Maris T, Gourtsoyiannis N. Fractional anisotropy and mean diffusivity measurements on normal human brain: comparison between low- and high-resolution diffusion tensor imaging sequences. Eur Radiol. 2006;16(1):187–92. http://www.ncbi.nlm.nih.gov/pubmed/15997366.

    Article  PubMed  Google Scholar 

  46. Qin W, Yu CS, Zhang F, Du XY, Jiang H, Yan YX, et al. Effects of echo time on diffusion quantification of brain white matter at 1.5T and 3.0T. Magn Reson Med. 2009;61(4):755–60.

    Article  PubMed  Google Scholar 

  47. Hui ES, Cheung MM, Chan KC, Wu EX. B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes. Neuroimage. 2010;49(3):2366–74. http://www.ncbi.nlm.nih.gov/pubmed/19837181.

    Article  PubMed  Google Scholar 

  48. Chung AW, Thomas DL, Ordidge RJ, Clark CA. Diffusion tensor parameters and principal eigenvector coherence: relation to b-value intervals and field strength. Magn Reson Imaging. 2013;31(5):742–7. http://www.ncbi.nlm.nih.gov/pubmed/23375836.

    Article  PubMed  Google Scholar 

  49. Szczepek E, Czerwosz L, Szary C, Czernicki Z. [Diffusion tensor imaging (DTI) in the differential diagnosis of normal pressure hydrocephalus and brain atrophy]. Pol Merkur Lekarski. 2014;37(220):221–6. http://www.ncbi.nlm.nih.gov/pubmed/25518577.

  50. Bastin ME, Armitage PA, Marshall I. A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magn Reson Imaging. 1998;16(7):773–85. http://www.ncbi.nlm.nih.gov/pubmed/9811143.

    Article  CAS  PubMed  Google Scholar 

  51. Koyama T, Marumoto K, Domen K, Ohmura T, Miyake H. Diffusion tensor imaging of idiopathic normal pressure hydrocephalus: a voxel-based fractional anisotropy study. Neurol Med Chir (Tokyo). 2012;52(2):68–74. http://www.ncbi.nlm.nih.gov/pubmed/22362286.

    Article  Google Scholar 

  52. Giannelli M, Belmonte G, Toschi N, Pesaresi I, Ghedin P, Traino AC, et al. Technical note: DTI measurements of fractional anisotropy and mean diffusivity at 1.5 T: comparison of two radiofrequency head coils with different functional designs and sensitivities. Med Phys. 2011;38(6):3205–11. http://www.ncbi.nlm.nih.gov/pubmed/21815395.

    Article  PubMed  Google Scholar 

  53. Chepuri NB, Yen Y, Burdette JH, Li H, Moody DM, Maldjian JA. Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol. 2002;23(5):803–8.

    PubMed  PubMed Central  Google Scholar 

  54. Marenco S, Rawlings R, Rohde GK, Barnett AS, Robyn A, Pierpaoli C, et al. NIH Public Access. 2007;147(1):69–78.

    Google Scholar 

  55. Hunsche S, Moseley ME, Stoeter P, Hedehus M. Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology. 2001;221(2):550–6. http://www.ncbi.nlm.nih.gov/pubmed/11687703.

    Article  CAS  PubMed  Google Scholar 

  56. Jansen JFA, Kooi ME, Kessels AGH, Nicolay K, Backes WH. Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0 Tesla. Invest Radiol. 2007;42(6):327–37. http://www.ncbi.nlm.nih.gov/pubmed/17507802.

    Article  PubMed  Google Scholar 

  57. Löbel U, Sedlacik J, Güllmar D, Kaiser WA, Reichenbach JR, Mentzel H. Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology. 2009;51(4):253–63. http://media.proquest.com/media/pq/classic/doc/1664748221/fmt/pi/rep/NONE?hl=&cit:auth=Löbel,+Ulrike;Sedlacik,+Jan;Güllmar,+Daniel;Kaiser,+Werner+A;Reichenbach,+Jürgen+R;Mentzel,+Hans-joachim&cit:title=Diffusion+te.

    Article  PubMed  Google Scholar 

  58. Bénézit A, Hertz-Pannier L, Dehaene-Lambertz G, Monzalvo K, Germanaud D, Duclap D, et al. Organising white matter in a brain without corpus callosum fibres. Cortex. 2015;63:155–71. http://www.sciencedirect.com/science/article/pii/S0010945214002858.

    Article  PubMed  Google Scholar 

  59. Kochunov P, Thompson PM, Lancaster JL, Bartzokis G, Smith S, Coyle T, et al. Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: tract-based spatial statistics study of aging. Neuroimage. 2007;35(2):478–87. http://www.sciencedirect.com/science/article/pii/S1053811906011943.

    Article  CAS  PubMed  Google Scholar 

  60. Inano S, Takao H, Hayashi N, Abe O, Ohtomo K. Effects of age and gender on white matter integrity. AJNR Am J Neuroradiol. 2011;32(11):2103–9. http://www.ncbi.nlm.nih.gov/pubmed/21998104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barrick TR, Charlton RA, Clark CA, Markus HS. White matter structural decline in normal ageing: a prospective longitudinal study using tract-based spatial statistics. Neuroimage. 2010;51(2):565–77. https://linkinghub.elsevier.com/retrieve/pii/S1053811910002016.

    Article  PubMed  Google Scholar 

  62. Yasmin H, Aoki S, Abe O, Nakata Y, Hayashi N, Masutani Y, et al. Tract-specific analysis of white matter pathways in healthy subjects: a pilot study using diffusion tensor MRI. Neuroradiology. 2009;51(12):831–40. http://www.ncbi.nlm.nih.gov/pubmed/19662389.

    Article  PubMed  Google Scholar 

  63. Zhai G, Lin W, Wilber KP, Gerig G, Gilmore JH. Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology. 2003;229(3):673–81. http://www.ncbi.nlm.nih.gov/pubmed/14657305.

    Article  PubMed  Google Scholar 

  64. Moon W-J, Provenzale JM, Sarikaya B, Ihn YK, Morlese J, Chen S, et al. Diffusion-tensor imaging assessment of white matter maturation in childhood and adolescence. Am J Roentgenol. 2011;197(3):704–12. http://www.ncbi.nlm.nih.gov/pubmed/21862815.

    Article  Google Scholar 

  65. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51(4):807–15. http://www.ncbi.nlm.nih.gov/pubmed/15065255.

    Article  PubMed  Google Scholar 

  66. Heiervang E, Behrens TEJ, Mackay CE, Robson MD, Johansen-Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage. 2006;33(3):867–77. http://www.ncbi.nlm.nih.gov/pubmed/17000119.

    Article  CAS  PubMed  Google Scholar 

  67. Pfefferbaum A, Adalsteinsson E, Sullivan EV. Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J Magn Reson Imaging. 2003;18(4):427–33. http://www.ncbi.nlm.nih.gov/pubmed/14508779.

    Article  PubMed  Google Scholar 

  68. Caiazzo G, Trojsi F, Cirillo M, Tedeschi G, Esposito F. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity. Neuroradiology. 2016;58(2):209–15. http://www.ncbi.nlm.nih.gov/pubmed/26573606.

    Article  PubMed  Google Scholar 

  69. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006;30:749–61. https://linkinghub.elsevier.com/retrieve/pii/S0149763406000467.

    Article  PubMed  Google Scholar 

  70. Luan P, Hua Q-Q, Lu B-X, Pan S-Y, Zhang X-L. [A diffusion tensor magnetic resonance imaging study of age-related cerebral white matter diffusion anisotropy in normal human adult]. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(10):1524–7. http://www.ncbi.nlm.nih.gov/pubmed/17959531.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul P. Kotian .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotian, R.P., Koteshwar, P. (2022). Fractional Anisotropy: Scalar Derivative of Diffusion-Tensor Imaging. In: Diffusion Tensor Imaging and Fractional Anisotropy. Springer, Singapore. https://doi.org/10.1007/978-981-19-5001-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5001-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5000-1

  • Online ISBN: 978-981-19-5001-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics