Skip to main content

DWI Physics and Imaging Techniques

  • Chapter
  • First Online:
Diffusion Tensor Imaging and Fractional Anisotropy

Abstract

This chapter deals with basic physics related to the microstructural Brownian motion of water molecules. The techniques related to diffusion-weighted imaging probe the movement of tissue microstructure which is reflected by its freedom of motion of water molecules. The apparent diffusion coefficient (ADC) maps are free from the effects of T1 and T2 relaxation. Diffusion-weighted imaging (DWI) gives us information on the restricted flow areas within the brain but does not give us accurate length and direction. However, diffusion tensor imaging (DTI) allows us to measure the length and direction of the diffusion anisotropy of water molecules in vivo. Parallel imaging and echo-planar imaging (EPI) techniques employing quick data acquisition with reduced artefacts are employed in DWI and DTI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seidl AH. Regulation of conduction time along axons. Neuroscience. 2014;276:126–34.

    Article  CAS  PubMed  Google Scholar 

  2. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience. 2014;276:29–47. https://www.sciencedirect.com/science/article/abs/pii/S0306452213009767?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  3. Lundgaard I, Osório MJ, Kress B, Sanggaard S, Nedergaard M. White matter astrocytes in health and disease. 2013. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC4016995&blobtype=pdf.

    Google Scholar 

  4. Bartzokis G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology. 2012;62(7):2137–53. https://linkinghub.elsevier.com/retrieve/pii/S0028390812000354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 2000;21(6):1099–109. http://www.ncbi.nlm.nih.gov/pubmed/10871022.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen NJ, Barres BA. Neuroscience: glia—more than just brain glue. Nature. 2009;457(7230):675–7. http://www.ncbi.nlm.nih.gov/pubmed/19194443.

    Article  CAS  PubMed  Google Scholar 

  7. Singer JR. NMR diffusion and flow measurements and an introduction to spin phase graphing. J Phys E Sci Instrum. 1978;11(4):281.

    Article  CAS  Google Scholar 

  8. Schlu M, Drescher R, Rexilius J, Lukas C, Hahn HK, Przuntek H, et al. Diffusion tensor imaging-based fractional anisotropy quantification in the corticospinal tract of patients with amyotrophic lateral. AJNR Am J Neuroradiol. 2007;28(4):724–30.

    Google Scholar 

  9. Rulseh AM, Keller J, Tintěra J, Kožíšek M, Vymazal J. Chasing shadows: what determines DTI metrics in gray matter regions? An in vitro and in vivo study. J Magn Reson Imaging. 2013;38(5):1103–10. http://doi.wiley.com/10.1002/jmri.24065.

    Article  PubMed  Google Scholar 

  10. Carr H, Purcell E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630–8. http://link.aps.org/doi/10.1103/PhysRev.94.630.

    Article  CAS  Google Scholar 

  11. Hrabe J, Kaur G, Guilfoyle DN. Principles and limitations of NMR diffusion measurements. J Med Phys. 2007;32(1):34–42. https://pubmed.ncbi.nlm.nih.gov/21217917.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kuchel PW, Pagès G, Nagashima K, Velan S, Vijayaragavan V, Nagarajan V, et al. Stejskal-tanner equation derived in full. Concepts Magn Reson Part A Bridg Educ Res. 2012;40:A(5).

    Google Scholar 

  13. Sinnaeve D. The Stejskal-Tanner equation generalized for any gradient shape-an overview of most pulse sequences measuring free diffusion. Concepts Magn Reson Part A Bridg Educ Res. 2012;40:A(2).

    Google Scholar 

  14. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36(6):893–906. http://www.ncbi.nlm.nih.gov/pubmed/8946355.

    Article  CAS  PubMed  Google Scholar 

  15. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625–32.

    Article  CAS  PubMed  Google Scholar 

  16. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188(6):1622–35.

    Article  Google Scholar 

  17. Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heiervang E, Behrens TEJ, Mackay CE, Robson MD, Johansen-Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage. 2006;33(3):867–77. http://www.ncbi.nlm.nih.gov/pubmed/17000119.

    Article  CAS  PubMed  Google Scholar 

  19. Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50(5):1077–88.

    Article  CAS  PubMed  Google Scholar 

  20. Drake-Pérez M, Boto J, Fitsiori A, Lovblad K, Vargas MI. Clinical applications of diffusion weighted imaging in neuroradiology. Insights Imaging. 2018;9(4):535–47.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Edlow BL, Hurwitz S, Edlow JA. Diagnosis of DWI-negative acute ischemic stroke. Neurology. 2017;89(3):256–62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Makin SDJ, Doubal FN, Dennis MS, Wardlaw JM. Clinically confirmed stroke with negative diffusion-weighted imaging magnetic resonance imaging: longitudinal study of clinical outcomes, stroke recurrence, and systematic review. Stroke. 2015;46(11):3142–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uhlenbeck GE, Ornstein LS. On the theory of the Brownian motion. Phys Rev. 1930;36(5):823–41.

    Article  CAS  Google Scholar 

  24. Caldeira AO, Leggett AJ. Path integral approach to quantum Brownian motion. Phys A Stat Mech Appl. 1983;121(3):587–616.

    Article  Google Scholar 

  25. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys. 1905;322(8):549–60. http://doi.wiley.com/10.1002/andp.19053220806.

    Article  Google Scholar 

  26. Fick’s insight on liquid diffusion. [cited 2014 Jul 16]. http://www.olemiss.edu/sciencenet/saltnet/fick_insights_EOS.pdf.

  27. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29. http://www.ncbi.nlm.nih.gov/pubmed/17599699.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288.

    Article  CAS  Google Scholar 

  29. Bammer R, Holdsworth SJ, Veldhuis WB, Skare ST. New methods in diffusion-weighted and diffusion tensor imaging. Magn Reson Imaging Clin N Am. 2009;17(2):175–204. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2768271&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burdette JH, Durden DD, Elster AD, Yen YF. High b-value diffusion-weighted MRI of normal brain. J Comput Assist Tomogr. 2001;25(4):515–9. http://www.ncbi.nlm.nih.gov/pubmed/11473179.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshiura T, Wu O, Zaheer A, Reese TG, Sorensen AG. Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter. Magn Reson Med. 2001;45(5):734–40. http://www.ncbi.nlm.nih.gov/pubmed/11323798.

    Article  CAS  PubMed  Google Scholar 

  32. Pereira RS, Harris AD, Sevick RJ, Frayne R. Effect of b value on contrast during diffusion-weighted magnetic resonance imaging assessment of acute ischemic stroke. J Magn Reson Imaging. 2002;15(5):591–6. http://doi.wiley.com/10.1002/jmri.10105.

    Article  PubMed  Google Scholar 

  33. Kingsley PB, Monahan WG. Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke. Magn Reson Med. 2004;51(5):996–1001.

    Article  PubMed  Google Scholar 

  34. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45(3):169–84.

    Article  PubMed  Google Scholar 

  35. Fornasa F. Diffusion-weighted magnetic resonance imaging: what makes water run fast or slow? J Clin Imaging Sci. 2011;1(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Neil JJ. Diffusion imaging concepts for clinicians. J Magn Reson Imaging. 2008;27(1):1–7. http://www.ncbi.nlm.nih.gov/pubmed/18050325.

    Article  PubMed  Google Scholar 

  37. Chepuri NB, Yen Y, Burdette JH, Li H, Moody DM, Maldjian JA. Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol. 2002;23(5):803–8.

    PubMed  PubMed Central  Google Scholar 

  38. Lenglet C. Brain mapping. Amsterdam: Elsevier; 2015. p. 245–51. http://www.sciencedirect.com/science/article/pii/B9780123970251002918.

    Book  Google Scholar 

  39. Shen J-M, Xia X-W, Kang W-G, Yuan J-J, Sheng L. The use of MRI apparent diffusion coefficient (ADC) in monitoring the development of brain infarction. BMC Med Imaging. 2011;11(1):2. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3022840&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beluffi G. Diffusion-weighted MR imaging. Applications in the body D.M. Koh H.C. Thoeni (Eds.). Radiol Med. 2011;116(3):499–500. http://link.springer.com/10.1007/s11547-011-0638-z.

    Article  Google Scholar 

  41. Spin echoes. [cited 2014 Jul 15]. http://www.wmf.univ.szczecin.pl/~sergeev/Dydaktyka/Pr-R/Hahn-spin-echo.pdf.

  42. Taouli B, Koh D-M. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47–66. http://www.ncbi.nlm.nih.gov/pubmed/20032142.

    Article  PubMed  Google Scholar 

  43. Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys. 1977;10(3):L55–8. http://stacks.iop.org/0022-3719/10/i=3/a=004?key=crossref.f48893f3d8bf21cb4a102c6293b5ce83.

    Article  CAS  Google Scholar 

  44. Poustchi-Amin M, Mirowitz SA, Brown JJ, McKinstry RC, Li T. Principles and applications of echo-planar imaging: a review for the general radiologist. RadioGraphics. 2001;21(3):767–79. http://www.ncbi.nlm.nih.gov/pubmed/11353123.

    Article  CAS  PubMed  Google Scholar 

  45. Stehling MK, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science. 1991;254(5028):43–50. http://www.ncbi.nlm.nih.gov/pubmed/1925560.

    Article  CAS  PubMed  Google Scholar 

  46. Hutter J, Price AN, Cordero-Grande L, Malik S, Ferrazzi G, Gaspar A, et al. Quiet echo planar imaging for functional and diffusion MRI. Magn Reson Med. 2018;79(3):1447–59.

    Article  PubMed  Google Scholar 

  47. Edelman RR, Wielopolski P, Schmitt F. Echo-planar MR imaging. Radiology. 1994;192(3):600–12.

    Article  CAS  PubMed  Google Scholar 

  48. Stehling MK, Schmitt F, Ladebeck R. Echo‐planar MR imaging of human brain oxygenation changes. J Magn Reson Imaging. 1993;3(3):471–4.

    Article  CAS  PubMed  Google Scholar 

  49. Deshmane A, Gulani V, Griswold MA. HHS Public Access. 2015;36(1):55–72.

    Google Scholar 

  50. Schmiedeskamp H, Newbould RD, Pisani LJ, Skare S, Glover GH, Pruessmann KP, et al. Improvements in parallel imaging accelerated functional MRI using multiecho echo-planar imaging. Magn Reson Med. 2010;63(4):959–69.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shen SH, Chiou YY, Wang JH, Yen MS, Lee RC, Lai CR, et al. Diffusion-weighted single-shot echo-planar imaging with parallel technique in assessment of endometrial cancer. Am J Roentgenol. 2008;190(2):481–8.

    Article  Google Scholar 

  52. Hamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc. 2017;101:71–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Le Bihan D, Douek P, Argyropoulou M, Turner R, Patronas N, Fulham M. Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging. 1993;5(1):25–31. http://www.ncbi.nlm.nih.gov/pubmed/8416686.

    PubMed  Google Scholar 

  54. Mori S, Van Zijl PCM. A motion correction scheme by twin-echo navigation for diffusion-weighted magnetic resonance imaging with multiple RF echo acquisition. Magn Reson Med. 1998;40(4):511–6.

    Article  CAS  PubMed  Google Scholar 

  55. Taylor PA, Alhamud A, van der Kouwe A, Saleh MG, Laughton B, Meintjes E. Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction. Hum Brain Mapp. 2016;37(12):4405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boelmans K, Bodammer NC, Suchorska B, Kaufmann J, Ebersbach G, Heinze HJ, et al. Diffusion tensor imaging of the corpus callosum differentiates corticobasal syndrome from Parkinson’s disease. Park Relat Disord. 2010;16(8):498–502. https://doi.org/10.1016/j.parkreldis.2010.05.006.

    Article  Google Scholar 

  57. Rordorf G, Koroshetz WJ, Copen WA, Cramer SC, Schaefer PW, Budzik RF, et al. Regional ischemia and ischemic injury in patients with acute middle cerebral artery stroke as defined by early diffusion-weighted and perfusion-weighted MRI. Stroke. 1998;29(5):939–43.

    Article  CAS  PubMed  Google Scholar 

  58. Rosenkrantz AB, Padhani AR, Chenevert TL, Koh DM, De Keyzer F, Taouli B, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging. 2015;42(5):1190–202.

    Article  PubMed  Google Scholar 

  59. Fisher M, Albers GW. Applications of diffusion-perfusion magnetic resonance imaging in acute ischemic stroke. Neurology. 1999;52(9):1750–6.

    Article  CAS  PubMed  Google Scholar 

  60. Sato K, Yuasa N, Fujita M, Fukushima Y. Clinical application of diffusion-weighted imaging for preoperative differentiation between uterine leiomyoma and leiomyosarcoma. Am J Obstet Gynecol. 2014;210(4):368.e1–8.

    Article  Google Scholar 

  61. Kwee TC, Takahara T, Ochiai R, Katahira K, Van Cauteren M, Imai Y, et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol. 2009;70(3):409–17.

    Article  PubMed  Google Scholar 

  62. Roberts TPL, Rowley HA. Diffusion weighted magnetic resonance imaging in stroke. Eur J Radiol. 2003;45(3):185–94.

    Article  PubMed  Google Scholar 

  63. Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am. 2009;17(2):225–44.

    Article  PubMed  Google Scholar 

  64. Vijithananda SM, Jayatilake ML, Weerakoon BS, Wathsala PGS, Thevapriya S, Thasanky S, et al. Skewness and kurtosis of apparent diffusion coefficient in human brain lesions to distinguish benign and malignant using MRI. In: Communications in computer and information science. Berlin: Springer; 2019.

    Google Scholar 

  65. Péran P, Cherubini A, Assogna F, Piras F, Quattrocchi C, Peppe A, et al. Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain. 2010;133(11):3423–33. http://www.ncbi.nlm.nih.gov/pubmed/20736190.

    Article  PubMed  Google Scholar 

  66. Kim CK, Jang SM, Park BK. Diffusion tensor imaging of normal prostate at 3T: effect of number of diffusion-encoding directions on quantitation and image quality. Br J Radiol. 2012;85(1015):e279–83. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3474052&tool=pmcentrez&rendertype=abstract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walhovd KB, Johansen-Berg H, Káradóttir RT. Unraveling the secrets of white matter—bridging the gap between cellular, animal and human imaging studies. Neuroscience. 2014;276:2–13. http://www.sciencedirect.com/science/article/pii/S0306452214005430.

    Article  CAS  PubMed  Google Scholar 

  68. Boll DT, Merkle EM. Diffuse liver disease: strategies for hepatic CT and MR imaging. Radiographics. 2009;29(6):1591–614. http://www.ncbi.nlm.nih.gov/pubmed/19959510.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul P. Kotian .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotian, R.P., Koteshwar, P. (2022). DWI Physics and Imaging Techniques. In: Diffusion Tensor Imaging and Fractional Anisotropy. Springer, Singapore. https://doi.org/10.1007/978-981-19-5001-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5001-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5000-1

  • Online ISBN: 978-981-19-5001-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics