Skip to main content

Harnessing Cereal–Rhizobial Interactions for Plant Growth Promotion and Sustainable Crop Production

  • Chapter
  • First Online:
Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes

Abstract

Rhizobia are known to establish symbiotic association with legume crops, and develop root nodules, a specific niche for N2 fixation. The interaction between rhizobia and cereal crops does not elicit to nodulation or nitrogen fixation but found to exhibit the plant growth-promoting characteristics and positively influence growth and yield by direct and indirect means. They can directly promote plant growth in cereal crops by producing plant hormones such as auxin, gibberellin, abscisic acid, and cytokinin, as well as lowering plant ethylene levels by producing the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and providing bioavailable phosphorus and iron for plant uptake. They can also indirectly promote the plant growth of cereal crops by inhibiting the growth of pathogens by removing the iron in the rhizosphere with siderophore production, by releasing the antibiotics, and/or by producing cell wall degrading enzymes. Rhizobia forms endophytic association with cereal crops without forming any structure such as nodules or causing any symptoms of the disease. They enter through crack entry and colonize the intercellular space and xylem tissues. Inoculation of rhizobia imparts more tolerant toward biotic and abiotic stress and helps sustainable cereal crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adnan M, Shah Z, Khan A, Khan GA, Ali A, Khan NA, Saleem N, Nawaz S, Akbar S, Samreen S, Zaib K (2014) Integrated effects of rhizobial inoculum and inorganic fertilizers on wheat yield and yield components. Am J Plant Sci 5(13):47504

    Article  Google Scholar 

  • Afify AH, Hauka FIA, El-Sawah AM, Yanni YG, El-Saadany AY (2019) Inoculation with single, dual or consortia of Rhizobium leguminosarum bv. trifolii, Pseudomonas stutzeri and Anabaena sp. and their effect on yield components of rice plant. J Agric Chem Biotechnol 10(9):189–193

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. In: Velázquez E, Rodríguez BC (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 35–41

    Google Scholar 

  • Al-Mallah MK, Davey MR, Cocking EC (1989) Formation of nodular structures on rice seedlings by rhizobia. J Exp Bot 40(4):473–478

    Article  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Alström S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7(3):232–238

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Bageshwar UK, Srivastava M, Pardha-Saradhi P, Paul S, Gothandapani S, Jaat RS, Shankar P, Yadav R, Biswas DR, Kumar PA, Padaria JC, Mandal PK, Annapurna K, Dasa HK (2017) An environment friendly engineered Azotobacter can replace substantial amount of urea fertilizer and yet sustain same wheat yield. Appl Environ Microbiol 83(15):17. https://doi.org/10.1128/AEM.00590-17

    Article  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30(5):485–491

    Article  Google Scholar 

  • Bardin S, Dan S, Osteras M, Finan TM (1996) A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti. J Bacteriol 178(15):4540–4547. https://doi.org/10.1128/JB.178.15.4540-4547.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beijerinck MW (1988) Die Bacterian der Papillionaceenknollchen. Bot Zeit 46:726–735

    Google Scholar 

  • Bender GL, Preston L, Barnard D, Rolfe BG (1990) Formation of nodule-like structures on the roots of the non-legumes rice and wheat. In: Nitrogen fixation: achievements and objectives. Springer, New York, NY, p 825

    Google Scholar 

  • Bhattacharjee RB, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay SN (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48(2):173–182. https://doi.org/10.1007/s00374-011-0614-9

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64(5):1644–1650

    Article  CAS  Google Scholar 

  • Boddey RM, Baldani VLD, Baldani JI, Dobereiner J (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95:109–121

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Reis VM, Dobereiner J (1991) Biological nitrogen fixation associated with sugarcane. Plant Soil 37:111–117

    Article  Google Scholar 

  • Boddey RM, De Oliveira OC, Urquiaga S, Reis VM, De Olivares FL, Baldani VLD, Dobereiner J (1995a) Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement. In: Ladha JK, Peoples MB (eds) Management of biological nitrogen fixation for the development of more productive and sustainable agricultural systems. Springer, Dordrecht, pp 195–209

    Chapter  Google Scholar 

  • Boddey RM, De Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Dobereiner J (1995b) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74(4):874–880

    Article  CAS  PubMed  Google Scholar 

  • Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a super nodulating mutant and the wild type. Planta 211(1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184(2):311–321

    Article  CAS  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, De Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66(12):5437–5447. https://doi.org/10.1128/AEM.66.12.5437-5447.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38(1):124–130

    Article  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia from roots to leaves inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops. A new look. Agro Food Indus Hi Tech:21–24

    Google Scholar 

  • Dakora FD, Matiru V, King M, Phillips DA (2002) Plant growth promotion in legumes and cereals by lumichrome, a rhizobial signal metabolite. Nitrogen fixation: global perspectives. CABI publishing, Wallingford, pp 321–322

    Google Scholar 

  • Dakora FD, Matiru V, Kanu AS (2015) Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front Plant Sci 6(700):1–11. https://doi.org/10.3389/fpls.2015.00700

    Article  Google Scholar 

  • De Bruijn FJ, Jing Y, Dazzo FB (1995) Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants, such as rice. In: Ladha JK, Peoples MB (eds) Management of biological nitrogen fixation for the development of more productive and sustainable agricultural systems. Springer, Dordrecht, pp 225–240

    Google Scholar 

  • Dent D, Cocking E (2017) Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: the Greener Nitrogen Revolution. Agric Food Secur 6(1):1–9

    Article  Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwar DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41(10):1160–1164

    CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Article  CAS  Google Scholar 

  • Dobereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57(3):423–436

    Article  CAS  PubMed  Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138(2):157–163

    Article  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Franks A, Ryan RP, Abbas A, Mark GL, O’Gara F (2006) Molecular tools for studying plant growth promoting rhizobacteria (PGPR). Molecular techniques for soil and rhizosphere microorganisms. CABI Publishing, Wallingford, pp 116–131

    Google Scholar 

  • Fuhrmann J, Wollum AG (1989) Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol Fertil Soils 7(2):108–112. https://doi.org/10.1007/BF00292567

    Article  Google Scholar 

  • Gerlach M, Vogel I (1902) Stickstoffsammelden bakterien. Zeit Bakter II 8:669

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharthi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotechnology 5(4):355–377

    Google Scholar 

  • Gopalaswamy G, Kannaiyan S, O’Callaghan KJ, Davey MR, Cocking EC (2000) The Xylem of rice (Oryza sativa) is colonized by Azorhizobium caulinodans. Proc R Soc Lond 267:103–107

    Article  CAS  Google Scholar 

  • Govedarica M (1990) Specific relationship between Beijerinckia derx strains and some maize hybrids. Zem Biljka 39(2):125–132

    Google Scholar 

  • Greetatorn T, Hashimoto S, Sarapat S, Tittabutr P, Boonkerd N, Uchiumi T, Teaumroong N (2019) Empowering rice seedling growth by endophytic Bradyrhizobium sp. SUTN 9-2. Lett Appl Microbiol 68(3):258–266

    CAS  PubMed  Google Scholar 

  • Gutierrez-Zamora MT, Martınez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91(2-3):117–126

    Article  CAS  PubMed  Google Scholar 

  • Hafeez FY, Safdar ME, Chaudhry AU, Malik KA (2004) Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Aus J Exp Agric 44(6):617–622

    Article  Google Scholar 

  • Hafeez FY, Hassan Z, Naeem F, Bashir A, Kiran A, Khan SA, Malik KA (2008) Rhizobium leguminosarum bv viciae strain LC-31: analysis of novel bacteriocin and ACC deaminase gene (s). In: Dakora FD, Chimphango SBM, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, Dordrecht, pp 247–248

    Chapter  Google Scholar 

  • Heckmann AB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Tirichine L, Stougaard J (2011) Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant-Microbe Interact 24(11):1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Hemissi I, Gargouri S, Sifi B (2011) Attempt of wheat protection against Fusarium culmorum using Rhizobium isolates. Tunis J Plant Prot 6(7586):32

    Google Scholar 

  • Hilali A, Prevost D, Broughton WJ, Antoun H (2001) Effects of inoculation with Rhizobium leguminosarum biovar trifolii on wheat cultivated in clover crop rotation agricultural soil in Morocco. Can J Microbiol 47(6):590–593

    Article  CAS  PubMed  Google Scholar 

  • Hoflich G (2000) Colonization and growth promotion of non-legumes by Rhizobium bacteria. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial Biosystems: New Frontiers Proceedings of the 8th International Symposium on Microbial Ecology, Atlantic Canada Society for Microbial Ecology, Halifax, Canada, pp 827–830

    Google Scholar 

  • Hu Y, Jiao J, Liu LX, Sun YW, Chen WF, Sui XH, Chen WX, Tian CF (2018) Evidence for phosphate starvation of rhizobia without terminal differentiation in legume nodules. Mol Plant-Microbe Interact 31(10):1060–1068. https://doi.org/10.1094/MPMI-02-18-0031-R

    Article  CAS  PubMed  Google Scholar 

  • Hussain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55

    Google Scholar 

  • Igiehon NO, Babalola OO, Aremu BR (2019) Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol 19(1):159. https://doi.org/10.1186/s12866-019-1536-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain V, Gupta K (2003) The flavonoid naringenin enhances intercellular colonization of rice roots by Azorhizobium caulinodans. Biol Fertil Soils 38(2):119–123

    Article  CAS  Google Scholar 

  • Jaiswal SK, Mohammed M, Ibny FY, Dakora FD (2021) Rhizobia as a source of plant growth-promoting molecules: potential applications and possible operational mechanisms. Front Sustain Food Syst 4:311

    Article  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65(2–3):197–209

    Article  Google Scholar 

  • Jarzyniak K, Banasiak J, Jamruszka T, Jamruszka T, Pawela A, Donato MD, Novak O, Geisler MM, Michal Jasinski M (2021) Early stages of legume–rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. Nat Plant 7(4):428–436. https://doi.org/10.1038/s41477-021-00873-6

    Article  CAS  Google Scholar 

  • Jha PN, Gomaa AB, Yanni YG, El-Saadany AEY, Stedtfeld TM, Stedtfeld RD, Gantner S, Chai B, Cole J, Hashsham SA, Dazzo FB (2020) Alterations in the endophyte-enriched root-associated microbiome of rice receiving growth-promoting treatments of urea fertilizer and Rhizobium biofertilizer. Microb Ecol 79(2):367–382

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Li G, Shan X (1992) Development of nodule-like structure on rice roots. In: Khush GS, Bennett J (eds) Nodulation and nitrogen fixation in rice potential and prospect. IRRI, Manila, pp 123–126

    Google Scholar 

  • Keymer DP, Kent AD (2014) Contribution of nitrogen fixation to first year Miscanthus × giganteus. GCB Bioenergy 6:577–586. https://doi.org/10.1111/gcbb.12095

    Article  CAS  Google Scholar 

  • Kinkle BK, Sadowsky MJ, Johnstone K, Koskinen WC (1994) Tellurium and selenium resistance in rhizobia and its potential use for direct isolation of Rhizobium meliloti from soil. Appl Environ Microbiol 60(5):1674–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisiala A, Laffont C, Emery RJN, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and non-nodulating strains. Mol Plant-Microbe Interact 26(10):1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Nautiyal CS (2000) Effects of salt and pH stress on temperature-tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora. Curr Microbiol 40(4):221–226

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice—necessity and possibilities. Geo J 35(3):363–372

    Google Scholar 

  • Ladha JK, Garcia M, Miyan S, Padre AT, Watanabe I (1989) Survival of Azorhizobium caulinodans in the soil and rhizosphere of wetland rice under Sesbania rostrata-rice rotation. Appl Environ Microbiol 55(2):454–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladha J, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, Van Kessel D, Ritcher DB, Chakraborty D, Pathak H (2016) Global nitrogen budgets in cereals: a 50-year assessment for maize, rice and wheat production systems. Sci Rep 6:19355. https://doi.org/10.1038/srep19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Jing Y, Shan X, Wang H, Guan C (1991) Identification of rice nodules that contain Rhizobium bacteria. Chinese J Bot 3:8–17

    Google Scholar 

  • Liu Y, Lam MC, Fang HH (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43(6):59–66

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang X, Qi H, Wang Q, Chen Y, Li Q, Zhang Y, Qui L, Fontana JE, Zhang B, Wang W, Xie Y (2017) The infection and impact of Azorhizobium caulinodans ORS571 on wheat (Triticum aestivum L.). PLoS One 12(11):e0187947. https://doi.org/10.1371/journal.pone.0187947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO (2004) Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci 84(1):37–45

    Article  Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. J Crop Improv 15(2):289–321

    Article  Google Scholar 

  • Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeunwenhoek 83:285–291. https://doi.org/10.1023/A:1023360919140

    Article  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34

    Article  CAS  PubMed  Google Scholar 

  • Marra LM, Soares CRFS, DeOliveira SM, Ferreira PAA, Soares BL, De Fraguas CR, DeLima JM, DeSouza-Moreira FM (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307. https://doi.org/10.1007/s11104-012-1157-z

    Article  CAS  Google Scholar 

  • Matiru V, Jaffer MA, Dakora FD (2000) Rhizobial colonization of roots of African landraces of sorghum and millet and the effects of sorghum growth and P nutrition. In: Proceedings of the 4th Congress of the African Association for Biological Nitrogen Fixation: Imperatives for BNF Research and Application in Africa for the 21st Century. African Association for Biological Nitrogen Fixation, Nairobi, Kenya, pp 99–100

    Google Scholar 

  • Matiru VN, Jaffer MA, Dakora FD (2005) Rhizobial infection of African landraces of sorghum (Sorghum bicolor L.) and finger millet (Eleucine coracana L.) promotes plant growth and alters tissue nutrient concentration under axenic conditions. Symbiosis 40:7–15

    CAS  Google Scholar 

  • Mauch-Main B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8(4):409–414. https://doi.org/10.1016/j.pbi.2005.05.015

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173(2):337–342

    Article  CAS  Google Scholar 

  • Mehboob I, Zahir ZA, Mahboob A, Shahzad SM, Jawad A, Arshad M (2008) Preliminary screening of Rhizobium isolates for improving growth of maize seedlings under axenic conditions. Soil Environ 27:64–71

    Google Scholar 

  • Mehboob I, Naveed M, Zahir ZA, Ashraf M (2012) Potential of rhizobia for sustainable production of non-legumes. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Dordrecht, pp 659–704

    Chapter  Google Scholar 

  • Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52(5):383–389

    Article  CAS  PubMed  Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33(4–5):457–463

    Article  CAS  Google Scholar 

  • Muglia CI, Grasso DH, Aguilar OM (2007) Rhizobium tropici response to acidity involves activation of glutathione synthesis. Microbiology 153(4):1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Murset V, Hennecke H, Pessi G (2012) Disparate role of rhizobial ACC deaminase in root-nodule symbioses. Symbiosis 57(1):43–50

    Article  CAS  Google Scholar 

  • Naidu VSGR, Panwar JDS, Annapurna K (2004) Effect of synthetic auxins and Azorhizobium caulinodans on growth and yield of rice. Indian J Microbiol 44:211–213

    CAS  Google Scholar 

  • Nautiyal CS (1997) Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiol Ecol 23(2):145–158. https://doi.org/10.1111/j.1574-6941.1997.tb00398.x

    Article  CAS  Google Scholar 

  • O’Callaghan KJ, Stone PJ, Hu X, Griffiths DW, Davey MR, Cocking EC (2000) Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66(5):2185–2191. https://doi.org/10.1128/AEM.66.5.2185-2191.2000

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56(4):662–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martınez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33(1):103–110

    Article  CAS  Google Scholar 

  • Pena-Cabriales JJ, Alexander M (1983) Growth of Rhizobium in soil amended with organic matter. Soil Sci Soc Am J 47(2):241–245

    Article  Google Scholar 

  • Peng S, Biswas JC, Ladha JK, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94(4):925–929

    Article  Google Scholar 

  • Perrine-Walker FM, Hynes MF, Rolfe BG, Hocart CH (2009) Strain competition and agar affect the interaction of rhizobia with rice. Can J Microbiol 55(10):1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Phillips DA, Torrey JG (1972) Studies on cytokinin production by Rhizobium. Plant Physiol 49(1):11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plazinski JA, Innes RW, Rolfe BG (1985) Expression of Rhizobium trifolii early nodulation genes on maize and rice plants. J Bacteriol 163(2):812–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59(5):1688–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podlesakova K, Fardoux J, Patrel D, Bonaldi K, Novak O, Strnad M, Giraud E, Spichal L, Nouwen N (2013) Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol Plant-Microbe Interact 26(10):1232–1238. https://doi.org/10.1094/MPMI-03-13-0076-R

    Article  CAS  PubMed  Google Scholar 

  • Quispel A (1991) A critical evaluation of the prospects for nitrogen fixation with non-legumes. Plant Soil 137:1–11

    Article  Google Scholar 

  • Qureshi MA, Shahzad H, Imran Z, Mushtaq M, Akhtar N, Ali MA, Mujeeb F (2013) Potential of Rhizobium species to enhance growth and fodder yield of maize in the presence and absence of l-tryptophan. J Anim Plant Sci 23(5):1448–1454

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, Dazzo FB, De Bruijn FJ (1997) Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194(1):81–98

    Article  CAS  Google Scholar 

  • Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Prot 115(3):108–113

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1997) Azoarcus spp. and their interactions with grass roots. In: Ladha JK, De Bruijn FJ, Malik KA (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 57–64

    Chapter  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct Plant Biol 28(9):829–836

    Article  Google Scholar 

  • Roger PA, Watanabe I (1986) Technologies for utilizing biological nitrogen fixation in wetland rice: potentialities, current usage, and limiting factors. In: De Datta SK, Patrick WH Jr (eds) Nitrogen economy of flooded rice soils. Springer, Dordrecht, pp 39–77

    Chapter  Google Scholar 

  • Rogers C, Oldroyd GE (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65(8):1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Rolfe BG, Bender GL (1990) Evolving a Rhizobium for non-legume nodulation. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation. Springer, Boston, MA, pp 779–780

    Chapter  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181(5):337–344

    Article  CAS  PubMed  Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lond Ser B Biol Sci 264(1380):341–346

    Article  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92(3):317–322

    CAS  Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Hoflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63(5):2038–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnabel T, Sattely E (2021) Improved stability of engineered ammonia production in the plant-symbiont Azospirillum brasilense. ACS Synth Biol 10(11):2982–2996

    Article  CAS  PubMed  Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Paleo AD, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8(5):e63666. https://doi.org/10.1371/journal.pone.0063666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamala T, Thilini AP, Anuradha S, Kulasooriya SA, Seneviratne G (2018) The effect of flavonoid naringenin coupled with the developed biofilm Azorhizobium Caulinodans-Aspergillus spp. on increase in rice yields in conventionally and organically grown rice. Int J Plant Stud 1(1):1–6

    Google Scholar 

  • Siddiqui ZA (2007) Biocontrol of Alternaria triticina by plant growth promoting rhizobacteria on wheat. Arch Phytopathol Plant Prot 40(4):301–308

    Article  Google Scholar 

  • Singh RK, Mishra RP, Jaiswal HK, Kumar V, Pandey SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52(5):345–349

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, Patel AK, Banjare U, Pandey AK (2020) Rhizobium radiobacter: a unique maize endophyte with high level of stress tolerance and multiple plant growth promoting properties. Plant Arch 20(1):2483–2488

    Google Scholar 

  • Smith MJ, Neilands JB (1984) Rhizobactin a siderophore from Rhizobium meliloti. J Plant Nutr 7:449–458

    Article  CAS  Google Scholar 

  • Sturtevant DB, Taller BJ (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89(4):1247–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S (2020) Significance of plant growth promoting rhizobacteria in grain legumes: growth promotion and crop production. Plants 9(11):1596

    Article  CAS  PubMed Central  Google Scholar 

  • Tan KZ, Radziah O, Halimi MS, Khairuddin AR, Habib SH, Shamsuddin ZH (2014) Isolation and characterization of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. Am J Agric Biol Sci 9(3):342–360

    Article  Google Scholar 

  • Trinick MJ, Hadobas PA (1995) Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabidopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. or legumes grown in tropical soils. Plant Soil 172(2):207–219

    Article  CAS  Google Scholar 

  • Ullah S, Khan MY, Asghar HN, Akhtar MJ, Zahir ZA (2017) Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Ann Microbiol 67(11):739–749

    Article  Google Scholar 

  • Ullah S, Ashraf M, Asghar HN, Iqbal Z, Ali R (2019) A review: plant growth promoting rhizobacteria-mediated amelioration of drought in crop plants. Soil Environ 38(1):1–20

    Article  CAS  Google Scholar 

  • Vargas LK, Volpiano CG, Lisboa BB, Giongo A, Beneduzi A, Passaglia LMP (2017) Potential of rhizobia as plant growth-promoting rhizobacteria. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 153–174. https://doi.org/10.1007/978-3-319-59174-2_7

    Chapter  Google Scholar 

  • Velazquez E, Peix A, Zurdo-Piniro JL, Palomo JL, Mateos PF, Rivas R, Munoz-Adelantado E, Toro N, Garcia-Benavides P, Martinez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumours or hairy roots in plants. Mol Plant-Microbe Interact 18(12):1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Plant Biol 95:4766–4771

    CAS  Google Scholar 

  • Warren WJ, Warren WP (1993) Mechanisms of auxin regulation of structural and physiological polarity in plants, tissues, cells and embryos. Funct Plant Biol 20(5):555–571

    Article  Google Scholar 

  • Wasai-Hara S, Hara S, Morikawa T, Sugawara M, Takami H, Yoneda J, Tokunaga T, Minamisawa K (2020) Diversity of Bradyrhizobium in non-leguminous sorghum plants: B. ottawaense isolates unique in genes for N2O reductase and lack of the type VI secretion system. Microbes Environ 35(1):ME19102

    Article  PubMed Central  Google Scholar 

  • Watkin EL, O’Hara GW, Glenn AR (2003) Physiological responses to acid stress of an acid-soil tolerant and an acid-soil sensitive strain of Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 35(4):621–624

    Article  CAS  Google Scholar 

  • Webster G, Davey MR, Cocking EC (1995) Parasponia with rhizobia: a neglected non-legume nitrogen-fixing symbiosis. Agbiotech News Information 7:119–124

    Google Scholar 

  • Werner D (1992) Symbiosis of plants and microbes (No. SB731 W49). Chapman & Hall, London

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–598

    Article  CAS  PubMed  Google Scholar 

  • Wiehe W, Hecht-Buchholz CH, Hoflich G (1994) Electron microscopic investigations on root colonization of Lupinus albus and Pisum sativum with two associative plant growth promoting rhizobacteria, Pseudomonas fluorescens and Rhizobium leguminosarum bv. trifolii. Symbiosis 17:15–35

    Google Scholar 

  • Wu Q, Peng X, Yang M, Zhang W, Dazzo FB, Uphoff N, Jing Y, Shen S (2018) Rhizobia promote the growth of rice shoots by targeting cell signalling, division and expansion. Plant Mol Biol 97(6):507–523

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Bhuvaneswari TV, Joseph CM, King MD, Phillips DA (2002) Roles for riboflavin in the Sinorhizobium-alfalfa association. Mol Plant-Microbe Interact 15(5):456–462

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336(1):129–142

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, Bruijn FD, Stoltzfus J, Buckley D, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In: Ladha JK, De Bruijn FJ, Malik KA (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 99–114

    Chapter  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28(9):845–870

    Article  CAS  Google Scholar 

  • Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186(1):45–52

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Not applicable.

Conflict of Interest

Author(s) declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, S. et al. (2022). Harnessing Cereal–Rhizobial Interactions for Plant Growth Promotion and Sustainable Crop Production. In: Maheshwari, D.K., Dobhal, R., Dheeman, S. (eds) Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes. Microorganisms for Sustainability, vol 36. Springer, Singapore. https://doi.org/10.1007/978-981-19-4906-7_12

Download citation

Publish with us

Policies and ethics