Skip to main content

Rheological Properties of Bast Fibre Composites

  • Chapter
  • First Online:
Bast Fibers and Their Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 216 Accesses

Abstract

Bast fibre composites offer tremendous properties to material science such as lightweight, sustainability and cost effectiveness. Ramie, Jute, Hemp, and Flax are the major bast fibres which are extracted from the stem of the plant. Rheology is the science which deals with the flow behaviour of the material and plays a major role for the fabrication of bast fibre composite materials. It deals with changing viscosity and non-Newtonian behaviour of the molten polymer sample. Complex viscosity, storage modulus, and loss modulus are the key parameters to be studied in this field. Proper understanding and analysis of rheological properties are very important to develop improved quality bast fibre composites having diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devnani GL, SS (2021) Utilization of natural cellulosic African Teff straw fiber for development of epoxy composites: thermal characterization with activation energy analysis. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1929646

  2. Devnani GL (2021) Recent trends in the surface modification of natural fibers for the preparation of green biocomposite. In: Thomas S, BP (ed) Green composites. Springer, Singapore, pp 273–293. https://doi.org/10.1007/978-981-15-9643-8_10

  3. Devnani GL, Sinha S (2019) Epoxy-based composites reinforced with African teff straw (Eragrostis tef) for lightweight applications, pp 1–12. https://doi.org/10.1177/0967391118822269

  4. Devnani GL, Sinha S (2018) African teff straw as a potential reinforcement in polymer composites for light-weight applications: mechanical, thermal, physical, and chemical characterization before and after alkali treatment. J Nat Fibers 00:1–15. https://doi.org/10.1080/15440478.2018.1546640

    Article  CAS  Google Scholar 

  5. Devnani GRGL, Maran JP (2021) Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose 2. https://doi.org/10.1007/s10570-021-03919-2

  6. Jaiswal D, Devnani GL, Rajeshkumar G, Sanjay MR, Siengchin S (2022) lPre of. Curr Res Green Sustain Chem 100271. https://doi.org/10.1016/j.crgsc.2022.100271

  7. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview, vol 24, pp 1–24

    Google Scholar 

  8. Rajeshkumar G (2021) Cellulose fiber from date palm petioles as potential reinforcement for polymer composites: physicochemical and structural properties, pp 1–11. https://doi.org/10.1002/pc.26106

  9. Rajeshkumar G, Seshadri SA, Devnani GL, Sanjay MR, Siengchin S, Maran JP, Al-dhabi NA, Karuppiah P, Arasu V, Sivarajasekar N, Anuf AR (2021) Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—a comprehensive review. J Clean Prod 310:127483. https://doi.org/10.1016/j.jclepro.2021.127483

    Article  CAS  Google Scholar 

  10. Devnani GL, Sinha S (2019) Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos B Eng 166:436–445. https://doi.org/10.1016/j.compositesb.2019.02.042

    Article  CAS  Google Scholar 

  11. Shukla N, Devnani GL (2021) Materials today: proceedings a review on mechanical properties of hybrid natural fiber polymer composites. Mater Today: Proceed 45:4702–4705. https://doi.org/10.1016/j.matpr.2021.01.122

    Article  CAS  Google Scholar 

  12. Sadrmanesh V, Chen Y (2018) Bast fibres: structure, processing, properties, and applications. Int Mater Rev 0:1–26. https://doi.org/10.1080/09506608.2018.1501171

  13. Koz RM, Mackiewicz-talarczyk M (2020) Bast fibres: flax 1:2. https://doi.org/10.1016/B978-0-12-818398-4.00006-2

    Article  Google Scholar 

  14. Ramesh M (2019) Flax (Linumusitatissimum L.) fibre reinforced polymer composite materials: a review on preparation, properties and prospects. Prog Mater Sci 102:109–166. https://doi.org/10.1016/j.pmatsci.2018.12.004

    Article  CAS  Google Scholar 

  15. Horne MRL (2020) 5B—Bast fibres: hemp cultivation and production, handbook of natural fibres. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-818398-4.00007-4

  16. Roy S, Lutfar LB (2012) 2—Bast fibres: jute, handbook of natural fibres. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-818398-4.00003-7

  17. Roy S, Lutfar LB (2012) 3—Bast fibres: ramie, handbook of natural fibres. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-818398-4.00004-9

  18. Ogah AO, Afiukwa JN, Nduji AA (2014) Characterization and comparison of rheological properties of agrofiber filled high-density polyethylene bio-composites. Open J Polym Chem 04:12–19. https://doi.org/10.4236/ojpchem.2014.41002

    Article  CAS  Google Scholar 

  19. Schemenauer JJ (2000) Melt rheological properties of natural fiber-reinforced polypropylene

    Google Scholar 

  20. Stanciu, Mariana D, Draghicescu HT, Tamas F, Terciu OM (2020) Mechanical and rheological behaviour of composites reinforced with natural fibres. Polymers 12. https://doi.org/10.3390/polym12061402

  21. Hsissou R, Bekhta A, Dagdag O, elBachiri A, Rafik M, Elharfi A (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04187

    Article  Google Scholar 

  22. Mohanty S, Verma SK, Nayak SK (2006) Rheological characterization of PP/jute composite melts. J Appl Polym Sci 99:1476–1484. https://doi.org/10.1002/app.22661

    Article  CAS  Google Scholar 

  23. Twite-Kabamba E, Mechraoui A, Rodrigue D (2009) Rheological properties of polypropylene/hemp fiber composites. Polym Compos 30:1401–1407. https://doi.org/10.1002/pc.20704

    Article  CAS  Google Scholar 

  24. Shao X, He L, li M (2016) Rheological properties of natural fiber reinforced PP composites

    Google Scholar 

  25. OA O (2017) Rheological properties of natural fiber polymer composites. MOJ Polym Sci 1. https://doi.org/10.15406/mojps.2017.01.00022

  26. Abdennadher A, Vincent M, Budtova T (2016) Rheological properties of molten flax- and Tencel®-polypropylene composites: Influence of fiber morphology and concentration. J Rheol 60:191–201. https://doi.org/10.1122/1.4938224

    Article  CAS  Google Scholar 

  27. Basu D, Banerjee AN, Mlsra A. Comparative rheological studies on jute-fiber-and class-fiber-filled polypropylene composite melts

    Google Scholar 

  28. le Moigne N, van den Oever M, Budtova T (2013) Dynamic and capillary shear rheology of natural fiber-reinforced composites. Polym Eng Sci 53:2582–2593. https://doi.org/10.1002/pen.23521

    Article  CAS  Google Scholar 

  29. Feng YH, Zhang DW, Qu JP, He HZ, Xu BP (2011) Rheological properties of sisal fiber/poly(butylene succinate) composites. Polym Testing 30:124–130. https://doi.org/10.1016/j.polymertesting.2010.11.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwi Varshney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varshney, I., Devnani, G.L. (2022). Rheological Properties of Bast Fibre Composites. In: Rajeshkumar, G., Devnani, G., Sinha, S., Sanjay, M., Siengchin, S. (eds) Bast Fibers and Their Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4866-4_10

Download citation

Publish with us

Policies and ethics