Skip to main content

Solar-Thermal Energy Conversion System: Design and Practice

  • Chapter
  • First Online:
CO2 Free Ammonia as an Energy Carrier

Abstract

In this chapter, the solar-thermal energy conversion system is investigated with a particular focus on the characterization of raw materials and the feasibility of the thermal driving system. Lithium orthosilicate (Li4SiO4) was selected as a suitable material for storing thermal energy at approximately 700 °C, and advanced pelletizing methods were proposed for practical applications. Additionally, special lithium orthosilicate-packed bed reactors (LPRs) and zeolite-packed bed reactors (ZPRs) were designed and developed for thermal driving demonstrations at the laboratory scale. The developed Li4SiO4 tablet (K-tablet) with a thermal driving demonstration system showed sufficient potential to be considered for the solar-thermal energy conversion system instead of the existing thermal energy storage (TES) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nevau P, Castaing J (1993) Solid–gas chemical heat pumps: fields of application and performance of the internal heat of reaction recovery process. Heat Recov Syst CHP 13(3):233–251

    Article  Google Scholar 

  2. Goetz V, Elie F, Spinner B (1993) The structure and performance of single effect solid/gas chemical heat pumps. Heat Recov Syst CHP 13(1):79–96

    Article  CAS  Google Scholar 

  3. Li TX, Wang RZ, Kiplagat JK, Chen H, Wang LW (2011) A new target-oriented methodology of decreasing the regeneration temperature of solid–gas thermochemical sorption refrigeration system driven by low-grade thermal energy. Int J Heat Mass Tran 54(21–22):4719–4729

    Article  CAS  Google Scholar 

  4. Li TX, Wang RZ, Kiplagat JK, Wang LW (2009) Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes. Appl Energ 86(7–8):1201–1209

    Article  CAS  Google Scholar 

  5. Bao HS, Wang RZ, Wang LW (2011) A resorption refrigerator driven by low grade thermal energy. Energ Convers Manage 52(6):2339–2344

    Article  CAS  Google Scholar 

  6. Xu J, Oliveira RG, Wang RZ (2011) Resorption system with simultaneous heat and cold production. Int J Refrig 34(5):1262–1267

    Article  CAS  Google Scholar 

  7. Oliveira RG, Wang RZ (2007) A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems. Carbon 45(2):390–396

    Article  CAS  Google Scholar 

  8. N’Tsoukpoe KE, Schmidt T, Rammelberg HU, Watts BA, Ruck WKL (2014) A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Appl Energ 124:1–16

    Article  Google Scholar 

  9. Linder M, Mertz R, Laurien E (2010) Experimental results of a compact thermally driven cooling system based on metal hydrides. Int J Hydrogen Energ 35(14):7623–7632

    Article  CAS  Google Scholar 

  10. Kato Y, Sasaki Y, Yoshizawa Y (2005) Magnesium oxide/water chemicals heat pump to enhance energy utilization of a cogeneration system. Energy 30(11–12):2144–2155

    Article  CAS  Google Scholar 

  11. Ogura H, Ishida H, Yokooji R, Kage H, Matsuno Y, Mujumdar AS (2001) Experimental studies on a novel chemical heat pump dryer using a solid–gas reaction. Dry Technol 19(7):1461–1477

    Article  CAS  Google Scholar 

  12. Kato Y, Yamada M, Kanie T, Yoshizawa Y (2011) Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemicals heat pump for high temperature gas reactors. Nucl Eng Des 210(1–3):1–8

    Google Scholar 

  13. HSC Chemistry ver. 7.0 (2011) Outotec, Finland

    Google Scholar 

  14. Nakagawa K, Ohashi T (1998) A novel method of CO2 capture from high temperature gases. J Electrochem Soc 145(4):1344–1346

    Article  CAS  Google Scholar 

  15. Kato M, Nakagawa K (2001) New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO2 absorbent. J Ceram Soc Jpn 109(1275):911–914

    Article  CAS  Google Scholar 

  16. Barin I, Platzki G (1995) Thermochemical data of pure substances, 3rd edn. Wiley, New York

    Book  Google Scholar 

  17. Takasu H, Ryu J, Kato Y (2017) Application of lithium orthosilicate for high-temperature thermochemical energy storage. Appl Energ 193:74–83

    Article  CAS  Google Scholar 

  18. Kim ST, Ryu J, Kato Y (2011) Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump. Prog Nucl Energ 53(7):1027–1033

    Article  CAS  Google Scholar 

  19. Kousksou T, Bruel P, Jamil A, Rhafiki TE, Zeraouli Y (2014) Energy storage: application and challenges. Sol Energ Mat Sol C 120:59–80

    Article  CAS  Google Scholar 

  20. Seggiani M, Puccini M, Vitolo S (2013) Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration. Int J Greenh Gas Con 17:25–31

    Article  CAS  Google Scholar 

  21. Wang S, An C, Zhang QH (2013) Syntheses and structures of lithium zirconates for high-temperature CO2 absorption. J Mater Chem A 11:3540–3550

    Article  Google Scholar 

  22. Toshiba Corporation (2005) Carbonic acid gas absorbent, and method and apparatus for separating carbonic acid gas. Japan Patent 2005075139, 16 Mar 2005

    Google Scholar 

  23. Puccini M, Seggiani M, Vitolo S (2013) Lithium silicate pellets for CO2 capture at high temperature. Chem Engineer Trans 35:373–378

    Google Scholar 

  24. Nair BN, Yamaguchi T, Kawamura H, Nakao SI, Nakagawa K (2004) Processing of lithium zirconate for applications in carbon dioxide separations: structure and properties of the powders. J Am Ceram Soc 87(1):68–74

    Article  CAS  Google Scholar 

  25. Olivares-Marin M, Castro-Diaz M, Drage TC, Maroto-Valer MM (2010) Use of small-amplitude oscillatory shear rheometry to study the flow properties of pure and potassium-doped Li2ZrO3 sorbents during the sorption of CO2 at high temperatures. Sep Purif Technol 73(3):415–420

    Article  CAS  Google Scholar 

  26. Pfeiffer H, Vazquez C, Lara VH, Bosch P (2007) Thermal behavior and CO2 absorption of Li2−xNaxZrO3 solid solutions. Chem Mater 19:922–926

    Article  CAS  Google Scholar 

  27. Ida J, Lin YS (2003) Mechanism of high temperature CO2 sorption on lithium zirconate. Environ Sci Technol 37:1999–2004

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55

    Article  CAS  Google Scholar 

  29. Ochoa-Fernandez E, Ronning M, Yu X, Grande T, Chen D (2008) Composition effects of nanocrystalline lithium zirconate on its CO2 capture properties. Ind Eng Chem Res 47:434–442

    Article  CAS  Google Scholar 

  30. Kim ST, Nihei T, Kurahashi C, Hoshino H, Takasu H, Kato Y (2019) Kinetic study of lithium orthosilicate pellets for high-temperature chemical heat pumps. Energ Storage 1(4):e72

    Article  CAS  Google Scholar 

  31. N’Tsoukpoe KE, Liu H, Pierres NL, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sust Energ Rev 13(9):2385–2396

    Article  Google Scholar 

  32. Kim ST, Kurahashi C, Hoshino H, Takahashi C, Tamura Y, Takasu H, Saito S, Kurihara M, Kato Y (2019) Thermal driving demonstration of Li4SiO4/CO2/Zeolite thermochemical energy storage system for efficient high-temperature heat utilizations. ISIJ Int 59(4):721–726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukitaka Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, S.T., Takasu, H., Kato, Y. (2023). Solar-Thermal Energy Conversion System: Design and Practice. In: Aika, Ki., Kobayashi, H. (eds) CO2 Free Ammonia as an Energy Carrier. Springer, Singapore. https://doi.org/10.1007/978-981-19-4767-4_8

Download citation

Publish with us

Policies and ethics