Skip to main content

Comparison of Several Ammonia Catalysts Worked Under Industrial Conditions

  • Chapter
  • First Online:

Abstract

Development of Ru catalysts for ammonia synthesis was investigated, assumed that hydrogen was supplied from the water electrolysis by using variable electricity from photovoltaic and wind turbine. Cerium oxide and carbon-based materials were used as the support material of ruthenium. Catalytic activity was measured under various reaction conditions, in which pressure, temperature, space velocity, and H2/N2 ratio were changed, supposing plant operation conditions. Optimization of catalyst composition and preparation procedure was carried out to obtain the catalysts for the demonstration test described in Chap. 16.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Institute of Chemical Engineers (2016) Introduction to ammonia production. https://www.aiche.org/resources/publications/cep/2016/september/introduction-ammonia-production. Accessed 25th Sep 2021

  2. Wang Q, Guo J, Chen P (2019) Recent progress towards mild-condition ammonia synthesis. J Energy Chem 36:25–36

    Article  Google Scholar 

  3. Nanba T, Nagata Y, Kobayashi K, Javaid R, Atsumi R, Nishi M, Mochizuki T, Manaka Y, Kojima H, Tsujimura T, Matsumoto H, Fujimoto T, Suzuki K, Ouchi T, Kameda S, Hoshino Y, Fujimoto S, Kai M, Fujimura Y (2021) Explorative study of a Ru/CeO2 catalyst for NH3 synthesis from renewable hydrogen and demonstration of NH3 synthesis under a range of reaction conditions. J Jpn Petrol Inst 64:1–9

    Article  CAS  Google Scholar 

  4. Izumi Y, Hoshikawa M, Aika K (1994) Adsorbed hydrogen effect on the adsorption and reactivity of N2 molecules on Ru/MgO and Ru–Cs+/MgO: hydrogen dipole effect enhanced by doped Cs+. Bull Chem Soc Jpn 67:3191–3200

    Article  CAS  Google Scholar 

  5. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim SW, Hara M, Hosono H (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940

    Article  CAS  PubMed  Google Scholar 

  6. Abe H, Niwa Y, Kitano M, Inoue Y, Sasase M, Nakao T, Tada T, Yokoyama T, Hara M, Hosono H (2017) Anchoring bond between Ru and N atoms of Ru/Ca2NH catalyst: crucial for the high ammonia synthesis activity. J Phys Chem C 121:20900–20904

    Article  CAS  Google Scholar 

  7. Sato K, Miyahara S, Ogura Y, Tsujimaru K, Wada Y, Toriyama T, Yamamoto T, Matsumura S, Nagaoka K (2020) Surface dynamics for creating highly active Ru sites for ammonia synthesis: accumulation of a low-crystalline, oxygen-deficient nanofraction. ACS Sustain Chem Eng 8:2726–2734

    Article  CAS  Google Scholar 

  8. Aika K, Niwa Y (1999) Basic concepts and properties of new generation ammonia synthesis catalysts for industrial use. Stud Surf Sci Catal 121:327–332

    Article  CAS  Google Scholar 

  9. Kadowaki Y, Aika K (1996) Promoter effect of Sm2O3 on Ru/Al2O3 in ammonia synthesis. J Catal 161:178–185

    Article  CAS  Google Scholar 

  10. Kowalczyk Z, Krukowski M, Raróg-Pilecka W, Szmigiel D, Zielinski J (2003) Carbon-based ruthenium catalyst for ammonia synthesis: role of the barium and caesium promoters and carbon support. Appl Catal A 248:67–73

    Article  CAS  Google Scholar 

  11. Aika K, Kawahara T, Murata S, Onishi T (1990) Promoter effect of alkali metal oxides and alkali earth metal oxides on active carbon-supported ruthenium catalyst for ammonia synthesis. Bull Chem Soc Jpn 63:1221–1225

    Article  CAS  Google Scholar 

  12. Lin B, Guo Y, Cao C, Ni J, Lin J, Jiang L (2018) Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis. Catal Today 316:230–236

    Article  CAS  Google Scholar 

  13. Rossetti I, Mangiarini F, Forni L (2007) Promoters state and catalyst activation during ammonia synthesis over Ru/C. Appl Catal A 323:219–225

    Article  CAS  Google Scholar 

  14. Lin B, Wang R, Lin J, Ni J, Wei K (2011) Effect of chlorine on the chemisorptive properties and ammonia synthesis activity of alumina-supported Ru catalysts. Catal Lett 141:1557–1568

    Article  CAS  Google Scholar 

  15. Nanba T, Javaid R, Matsumoto H (2019) Ammonia synthesis by using hydrogen produced from renewable energy. Shokubai 61:66–71

    CAS  Google Scholar 

  16. Liu P, Niu R, Li W, Wang S, Li J (2019) Morphology effect of ceria on the ammonia synthesis activity of Ru/CeO2 catalysts. Catal Lett 149:1007–1016

    Article  CAS  Google Scholar 

  17. Lin B, Liu Y, Heng L, Wang X, Ni J, Lin J, Jiang L (2018) Morphology effect of ceria on the catalytic performances of Ru/CeO2 catalysts for ammonia synthesis. Ind Eng Chem Res 57:9127–9135

    Article  CAS  Google Scholar 

  18. Ma Z, Zhao S, Pei X, Xiong X, Hu B (2017) New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalysts. Catal Sci Technol 7:191–199

    Article  CAS  Google Scholar 

  19. Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geo 261:217–229

    Article  CAS  Google Scholar 

  20. Javaid R, Nanba T (2021) Effect of reaction conditions and surface characteristics of Ru/CeO2 on catalytic performance for ammonia synthesis as a clean fuel. Int J Hydrogen Energy 46:18107–18115

    Article  CAS  Google Scholar 

  21. Manaka Y, Nagata Y, Kobayashi K, Kobayashi D, Nanba T (2020) The effect of a ruthenium precursor on the low-temperature ammonia synthesis activity over Ru/CeO2. Dalton Trans 49:17143–17146

    Article  CAS  PubMed  Google Scholar 

  22. Aika K, Hori H, Ozaki A (1972) Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal. J Catal 27:424–431

    Article  CAS  Google Scholar 

  23. Guo S, Pan X, Gao H, Yang Z, Zhao J, Bao X (2010) Probing the electronic effect of carbon nanotubes in catalysis: NH3 synthesis with Ru nanoparticles. Chem Eur J 16:5379–5384

    Article  CAS  PubMed  Google Scholar 

  24. Zhao J, Zhou J, Yuan M, You Z (2017) Controllable synthesis of Ru nanocrystallites on graphene substrate as a catalyst for ammonia synthesis. Catal Lett 147:1363–1370

    Article  Google Scholar 

  25. Ozaki A, Aika K, Hori H (1971) A new catalyst system for ammonia synthesis. Bull Chem Soc Jpn 44:3216

    Article  CAS  Google Scholar 

  26. Truszkiewicz E, Raróg-Pilecka W, Schmidt-Szałowski K, Jodzis S, Wilczkowska E, Łomot D, Kaszkur Z, Karpiński Z, Kowalczyk Z (2009) Barium-promoted Ru/carbon catalyst for ammonia synthesis: state of the system when operating. J Catal 286:181–190

    Article  Google Scholar 

  27. Lin B, Qi Y, Guo Y, Lin J, Ni J (2015) Effect of potassium precursors on the thermal stability of K-promoted Ru/carbon catalysts for ammonia synthesis. Catal Sci Technol 5:2829–2838

    Article  CAS  Google Scholar 

  28. Fernández C, Sassoye C, Debecker DP, Sanchez C, Ruiz P (2014) Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions. Appl Catal A 474:194–202

    Article  Google Scholar 

  29. Hansen TW, Hansen PL, Dahl S, Jacobsen CJH (2002) Support effect and active sites on promoted ruthenium catalysts for ammonia synthesis. Catal Lett 84:7–12

    Article  CAS  Google Scholar 

  30. Tsyrul’nikov PJ, Iost KN, Shitova NB, Temerev VL (2016) Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: a review. Catal Ind 8:341–347

    Google Scholar 

  31. Nishi M, Chen SY, Takagi H (2020) X-ray absorption spectroscopy of Ba- and Cs-promoted Ru/mesoporous carbon catalysts for long-term ammonia synthesis under intermittent operation conditions. Sustain Energy Fuels 4:832–842

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobayashi, K. et al. (2023). Comparison of Several Ammonia Catalysts Worked Under Industrial Conditions. In: Aika, Ki., Kobayashi, H. (eds) CO2 Free Ammonia as an Energy Carrier. Springer, Singapore. https://doi.org/10.1007/978-981-19-4767-4_17

Download citation

Publish with us

Policies and ethics