Abstract
It is shown that generalized Rota–Baxter operators introduced in [W. A. Martinez, E. G. Reyes, M. Ronco, Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)] are a special case of Rota–Baxter systems [T. Brzeziński, J. Algebra 460, 1–25 (2016)]. The latter are enriched by homothetisms and then shown to give examples of Dyck\(^m\)-algebras.
Keywords
- Rota-Baxter algebra
- Rota-Baxter system
- Double homothetism
- Dyck\(^m\)-algebra
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
R.R. Andruszkiewicz, T. Brzeziński, B. Rybołowicz, Ideal ring extensions and trusses. J. Algebra 600, 237–278 (2022)
G. Baxter, An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10, 731–742 (1960)
T. Brzeziński, Rota-Baxter systems, dendriform algebras and covariant bialgebras. J. Algebra 460, 1–25 (2016)
R.B. Busby, Double centralizers and extensions of \(C^*\)-algebras. Trans. Amer. Math. Soc. 132, 79–99 (1968)
A. Das, Generalized Rota-Baxter systems (2020). arXiv:2007.13652
J.F. Cariñena, J. Grabowski, G. Marmo, Quantum bi-Hamiltonian systems. Int. J. Modern Phys. A 15, 4797–4810 (2000)
L. Guo, An Introduction to Rota-Baxter Algebra (International Press, Somerville, 2012). xii+226 pp
S. Helgason, Multipliers of Banach algebras. Ann. Math. 64, 240–254 (1956)
G. Hochschild, Cohomology and representations of associative algebras. Duke Math. J. 14, 921–948 (1947)
J.-L. Loday, Dialgebras, in Dialgebras and Related Operads, Lecture Notes in Mathematics, vol. 1763 (Springer, Berlin, 2001), pp. 7–66
D. López, L.-F. Préville-Ratelle, M. Ronco, Algebraic structures defined on \(m\)-Dyck paths (2015) arXiv:1508.01252
D. López, L.-F. Préville-Ratelle, M. Ronco, A simplicial complex splitting associativity. J. Pure Appl. Algebra 224, 106222 (2019)
S. Mac Lane, Extensions and obstructions for rings. Illinois J. Math. 2, 316–345 (1958)
W.A. Martinez, E.G. Reyes, M. Ronco, Generalizing dendriform algebras: Dyck\(^m\)-algebras, Rota\(^m\)-algebras, and Rota-Baxter operators. Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)
M. Petrich, Ideal extensions of rings. Acta Math. Hung. 45, 263–283 (1985)
L. Redei, Die Verallgemeinerung der Schreierschen Erweiterungstheorie. Acta Sci. Math. Szeged 14, 252–273 (1952)
G.-C. Rota, Baxter algebras and combinatorial identities. I. Bull. Amer. Math. Soc. 75, 325–329 (1969)
Acknowledgements
The research is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Brzeziński, T. (2022). Homothetic Rota–Baxter Systems and Dyck\(^m\)-Algebras. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2021. Springer Proceedings in Mathematics & Statistics, vol 396. Springer, Singapore. https://doi.org/10.1007/978-981-19-4751-3_7
Download citation
DOI: https://doi.org/10.1007/978-981-19-4751-3_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-4750-6
Online ISBN: 978-981-19-4751-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)