Skip to main content

Homothetic Rota–Baxter Systems and Dyck\(^m\)-Algebras

  • 399 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 396)

Abstract

It is shown that generalized Rota–Baxter operators introduced in [W. A. Martinez, E. G. Reyes, M. Ronco, Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)] are a special case of Rota–Baxter systems [T. Brzeziński, J. Algebra 460, 1–25 (2016)]. The latter are enriched by homothetisms and then shown to give examples of Dyck\(^m\)-algebras.

Keywords

  • Rota-Baxter algebra
  • Rota-Baxter system
  • Double homothetism
  • Dyck\(^m\)-algebra

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.R. Andruszkiewicz, T. Brzeziński, B. Rybołowicz, Ideal ring extensions and trusses. J. Algebra 600, 237–278 (2022)

    Google Scholar 

  2. G. Baxter, An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10, 731–742 (1960)

    CrossRef  MATH  Google Scholar 

  3. T. Brzeziński, Rota-Baxter systems, dendriform algebras and covariant bialgebras. J. Algebra 460, 1–25 (2016)

    CrossRef  MATH  Google Scholar 

  4. R.B. Busby, Double centralizers and extensions of \(C^*\)-algebras. Trans. Amer. Math. Soc. 132, 79–99 (1968)

    MATH  Google Scholar 

  5. A. Das, Generalized Rota-Baxter systems (2020). arXiv:2007.13652

  6. J.F. Cariñena, J. Grabowski, G. Marmo, Quantum bi-Hamiltonian systems. Int. J. Modern Phys. A 15, 4797–4810 (2000)

    CrossRef  MATH  Google Scholar 

  7. L. Guo, An Introduction to Rota-Baxter Algebra (International Press, Somerville, 2012). xii+226 pp

    Google Scholar 

  8. S. Helgason, Multipliers of Banach algebras. Ann. Math. 64, 240–254 (1956)

    CrossRef  MATH  Google Scholar 

  9. G. Hochschild, Cohomology and representations of associative algebras. Duke Math. J. 14, 921–948 (1947)

    CrossRef  MATH  Google Scholar 

  10. J.-L. Loday, Dialgebras, in Dialgebras and Related Operads, Lecture Notes in Mathematics, vol. 1763 (Springer, Berlin, 2001), pp. 7–66

    Google Scholar 

  11. D. López, L.-F. Préville-Ratelle, M. Ronco, Algebraic structures defined on \(m\)-Dyck paths (2015) arXiv:1508.01252

  12. D. López, L.-F. Préville-Ratelle, M. Ronco, A simplicial complex splitting associativity. J. Pure Appl. Algebra 224, 106222 (2019)

    CrossRef  MATH  Google Scholar 

  13. S. Mac Lane, Extensions and obstructions for rings. Illinois J. Math. 2, 316–345 (1958)

    Google Scholar 

  14. W.A. Martinez, E.G. Reyes, M. Ronco, Generalizing dendriform algebras: Dyck\(^m\)-algebras, Rota\(^m\)-algebras, and Rota-Baxter operators. Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)

    CrossRef  Google Scholar 

  15. M. Petrich, Ideal extensions of rings. Acta Math. Hung. 45, 263–283 (1985)

    CrossRef  MATH  Google Scholar 

  16. L. Redei, Die Verallgemeinerung der Schreierschen Erweiterungstheorie. Acta Sci. Math. Szeged 14, 252–273 (1952)

    MATH  Google Scholar 

  17. G.-C. Rota, Baxter algebras and combinatorial identities. I. Bull. Amer. Math. Soc. 75, 325–329 (1969)

    Google Scholar 

Download references

Acknowledgements

The research is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Brzeziński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brzeziński, T. (2022). Homothetic Rota–Baxter Systems and Dyck\(^m\)-Algebras. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2021. Springer Proceedings in Mathematics & Statistics, vol 396. Springer, Singapore. https://doi.org/10.1007/978-981-19-4751-3_7

Download citation