Skip to main content

Risk Assessment and Prevention Strategies for Hereditary Gynecological Cancers

  • Chapter
  • First Online:
Personalization in Gynecologic Oncology

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

  • 219 Accesses

Abstract

A variety of hereditary cancer syndromes contribute to the development of gynecological cancers. These syndromes are caused due to germline pathogenic variants (GPVs) in tumor supressor genes or DNA repair genes. With the increasing use of genomic sequencing in clinical practice, the number of individuals diagnosed with GPVs in genes associated with hereditary cancer syndromes is increasing. Hereditary cancer syndromes differ in the types of cancer susceptible to develop, the risk of developing certain cancer, cancer treatment strategies, and possible cancer preventive strategies, depending on the gene responsible for the syndrome. Thus, physicians involved in the management of gynecological cancers perform accurate genetic risk assessments based on accurate knowledge about each syndrome and provide proper medical intervention to prevent developing cancer or to detect cancers in their early stage. Genetic risk assessments also helps in the selection of appropriate fertility preservation methods and treatment strategies for hormonal imbalances in women. Knowledge about significance and accuracy of various genetic tests may be helpful in interpreting the results of the test and in determining the appropriate medical interventions. Here, we reviewed mechanisms of cancer development and clinical features of hereditary gynecological cancers, as well as genetic risk assessment and cancer prevention strategies for those syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67. https://doi.org/10.1016/0092-8674(90)90186-i.

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 1993;9(4):138–41. https://doi.org/10.1016/0168-9525(93)90209-z.

    Article  CAS  PubMed  Google Scholar 

  3. Toguchida J, McGee TL, Paterson JC, Eagle JR, Tucker S, Yandell DW, et al. Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics. 1993;17(3):535–43. https://doi.org/10.1006/geno.1993.1368.

    Article  CAS  PubMed  Google Scholar 

  4. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. https://doi.org/10.1126/science.7545954.

    Article  CAS  PubMed  Google Scholar 

  5. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92. https://doi.org/10.1038/378789a0.

    Article  CAS  PubMed  Google Scholar 

  6. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368(6468):258–61. https://doi.org/10.1038/368258a0.

    Article  CAS  PubMed  Google Scholar 

  7. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75(6):1215–25. https://doi.org/10.1016/0092-8674(93)90330-s.

    Article  CAS  PubMed  Google Scholar 

  8. Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371(6492):75–80. https://doi.org/10.1038/371075a0.

    Article  CAS  PubMed  Google Scholar 

  9. Palombo F, Gallinari P, Iaccarino I, Lettieri T, Hughes M, D’Arrigo A, et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science. 1995;268(5219):1912–4. https://doi.org/10.1126/science.7604265.

    Article  CAS  PubMed  Google Scholar 

  10. Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, et al. Pathogenic germline variants in 10,389 adult cancers. Cell. 2018;173(2):355–70.e14. https://doi.org/10.1016/j.cell.2018.03.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3. https://doi.org/10.1073/pnas.68.4.820.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MD, Wendl MC, et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun. 2014;5:3156. https://doi.org/10.1038/ncomms4156.

    Article  CAS  PubMed  Google Scholar 

  13. Lu C, Xie M, Wendl MC, Wang J, McLellan MD, Leiserson MD, et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun. 2015;6:10086. https://doi.org/10.1038/ncomms10086.

    Article  CAS  PubMed  Google Scholar 

  14. Porkka N, Valo S, Nieminen TT, Olkinuora A, Mäki-Nevala S, Eldfors S, et al. Sequencing of Lynch syndrome tumors reveals the importance of epigenetic alterations. Oncotarget. 2017;8(64):108020–30. https://doi.org/10.18632/oncotarget.22445.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ollikainen M, Hannelius U, Lindgren CM, Abdel-Rahman WM, Kere J, Peltomäki P. Mechanisms of inactivation of MLH1 in hereditary nonpolyposis colorectal carcinoma: a novel approach. Oncogene. 2007;26(31):4541–9. https://doi.org/10.1038/sj.onc.1210236.

    Article  CAS  PubMed  Google Scholar 

  16. Moreira L, Muñoz J, Cuatrecasas M, Quintanilla I, Leoz ML, Carballal S, et al. Prevalence of somatic mutl homolog 1 promoter hypermethylation in Lynch syndrome colorectal cancer. Cancer. 2015;121(9):1395–404. https://doi.org/10.1002/cncr.29190.

    Article  CAS  PubMed  Google Scholar 

  17. Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9. https://doi.org/10.1038/nature10275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer. 1997;76(1):1–14. https://doi.org/10.1038/bjc.1997.328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bellacosa A, Godwin AK, Peri S, Devarajan K, Caretti E, Vanderveer L, et al. Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations. Cancer Prev Res (Phila). 2010;3(1):48–61. https://doi.org/10.1158/1940-6207.Capr-09-0078.

    Article  CAS  Google Scholar 

  20. Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen X, et al. Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst. 2002;94(3):205–15. https://doi.org/10.1093/jnci/94.3.205.

    Article  PubMed  Google Scholar 

  21. Hall MJ, Bernhisel R, Hughes E, Larson K, Rosenthal ET, Singh NA, et al. Germline pathogenic variants in the ataxia telangiectasia mutated (ATM) gene are associated with high and moderate risks for multiple cancers. Cancer Prev Res (Phila). 2021;14(4):433–40. https://doi.org/10.1158/1940-6207.Capr-20-0448.

    Article  CAS  Google Scholar 

  22. Southey MC, Goldgar DE, Winqvist R, Pylkäs K, Couch F, Tischkowitz M, et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet. 2016;53(12):800–11. https://doi.org/10.1136/jmedgenet-2016-103839.

    Article  CAS  PubMed  Google Scholar 

  23. Goldgar DE, Healey S, Dowty JG, Da Silva L, Chen X, Spurdle AB, et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 2011;13(4):R73. https://doi.org/10.1186/bcr2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2016;2(4):482–90. https://doi.org/10.1001/jamaoncol.2015.5495.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carter NJ, Marshall ML, Susswein LR, Zorn KK, Hiraki S, Arvai KJ, et al. Germline pathogenic variants identified in women with ovarian tumors. Gynecol Oncol. 2018;151(3):481–8. https://doi.org/10.1016/j.ygyno.2018.09.030.

    Article  PubMed  Google Scholar 

  26. Hirasawa A, Imoto I, Naruto T, Akahane T, Yamagami W, Nomura H, et al. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer. Oncotarget. 2017;8(68):112258–67. https://doi.org/10.18632/oncotarget.22733.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Long B, Lilyquist J, Weaver A, Hu C, Gnanaolivu R, Lee KY, et al. Cancer susceptibility gene mutations in type I and II endometrial cancer. Gynecol Oncol. 2019;152(1):20–5. https://doi.org/10.1016/j.ygyno.2018.10.019.

    Article  CAS  PubMed  Google Scholar 

  28. Ring KL, Bruegl AS, Allen BA, Elkin EP, Singh N, Hartman AR, et al. Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Mod Pathol. 2016;29(11):1381–9. https://doi.org/10.1038/modpathol.2016.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Susswein LR, Marshall ML, Nusbaum R, Vogel Postula KJ, Weissman SM, Yackowski L, et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med. 2016;18(8):823–32. https://doi.org/10.1038/gim.2015.166.

    Article  CAS  PubMed  Google Scholar 

  30. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Am Med Assoc. 2017;317(23):2402–16. https://doi.org/10.1001/jama.2017.7112.

    Article  CAS  Google Scholar 

  31. Zhang S, Royer R, Li S, McLaughlin JR, Rosen B, Risch HA, et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol Oncol. 2011;121(2):353–7. https://doi.org/10.1016/j.ygyno.2011.01.020.

    Article  CAS  PubMed  Google Scholar 

  32. Alsop K, Fereday S, Meldrum C, de Fazio A, Emmanuel C, George J, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 2012;30(21):2654–63. https://doi.org/10.1200/jco.2011.39.8545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bolton KL, Chenevix-Trench G, Goh C, Sadetzki S, Ramus SJ, Karlan BY, et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. J Am Med Assoc. 2012;307(4):382–90. https://doi.org/10.1001/jama.2012.20.

    Article  CAS  Google Scholar 

  34. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK, et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. J Am Med Assoc. 2011;306(14):1557–65. https://doi.org/10.1001/jama.2011.1456.

    Article  CAS  Google Scholar 

  35. Segev Y, Iqbal J, Lubinski J, Gronwald J, Lynch HT, Moller P, et al. The incidence of endometrial cancer in women with BRCA1 and BRCA2 mutations: an international prospective cohort study. Gynecol Oncol. 2013;130(1):127–31. https://doi.org/10.1016/j.ygyno.2013.03.027.

    Article  CAS  PubMed  Google Scholar 

  36. Shu CA, Pike MC, Jotwani AR, Friebel TM, Soslow RA, Levine DA, et al. Uterine cancer after risk-reducing salpingo-oophorectomy without hysterectomy in women with BRCA mutations. JAMA Oncol. 2016;2(11):1434–40. https://doi.org/10.1001/jamaoncol.2016.1820.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32. https://doi.org/10.1056/NEJMra012242.

    Article  CAS  PubMed  Google Scholar 

  38. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet. 2009;41(1):112–7. https://doi.org/10.1038/ng.283.

    Article  CAS  PubMed  Google Scholar 

  39. Dominguez-Valentin M, Sampson JR, Seppälä TT, Ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(1):15–25. https://doi.org/10.1038/s41436-019-0596-9.

    Article  CAS  PubMed  Google Scholar 

  40. Rossi L, Le Frere-Belda MA, Laurent-Puig P, Buecher B, De Pauw A, Stoppa-Lyonnet D, et al. Clinicopathologic characteristics of endometrial cancer in Lynch syndrome: a French multicenter study. Int J Gynecol Cancer. 2017;27(5):953–60. https://doi.org/10.1097/igc.0000000000000985.

    Article  PubMed  Google Scholar 

  41. Helder-Woolderink JM, Blok EA, Vasen HF, Hollema H, Mourits MJ, De Bock GH. Ovarian cancer in Lynch syndrome; a systematic review. Eur J Cancer. 2016;55:65–73. https://doi.org/10.1016/j.ejca.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  42. Engel C, Loeffler M, Steinke V, Rahner N, Holinski-Feder E, Dietmaier W, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012;30(35):4409–15. https://doi.org/10.1200/jco.2012.43.2278.

    Article  PubMed  Google Scholar 

  43. Song H, Cicek MS, Dicks E, Harrington P, Ramus SJ, Cunningham JM, et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23(17):4703–9. https://doi.org/10.1093/hmg/ddu172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pal T, Akbari MR, Sun P, Lee JH, Fulp J, Thompson Z, et al. Frequency of mutations in mismatch repair genes in a population-based study of women with ovarian cancer. Br J Cancer. 2012;107(10):1783–90. https://doi.org/10.1038/bjc.2012.452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Watson P, Bützow R, Lynch HT, Mecklin JP, Järvinen HJ, Vasen HF, et al. The clinical features of ovarian cancer in hereditary nonpolyposis colorectal cancer. Gynecol Oncol. 2001;82(2):223–8. https://doi.org/10.1006/gyno.2001.6279.

    Article  CAS  PubMed  Google Scholar 

  46. Nelen MR, Padberg GW, Peeters EA, Lin AY, van den Helm B, Frants RR, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet. 1996;13(1):114–6. https://doi.org/10.1038/ng0596-114.

    Article  CAS  PubMed  Google Scholar 

  47. Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7. https://doi.org/10.1158/1078-0432.Ccr-11-2283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86. https://doi.org/10.1136/gut.2009.198499.

    Article  CAS  PubMed  Google Scholar 

  49. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53. https://doi.org/10.1053/gast.2000.20228.

    Article  CAS  PubMed  Google Scholar 

  50. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18(1):38–43. https://doi.org/10.1038/ng0198-38.

    Article  CAS  PubMed  Google Scholar 

  51. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391(6663):184–7. https://doi.org/10.1038/34432.

    Article  CAS  PubMed  Google Scholar 

  52. McGarrity TJ, Amos CI, Baker MJ. Peutz-Jeghers syndrome. In: Gene reviews. https://www.ncbi.nlm.nih.gov/books/NBK1266/

  53. Young RH, Welch WR, Dickersin GR, Scully RE. Ovarian sex cord tumor with annular tubules: review of 74 cases including 27 with Peutz-Jeghers syndrome and four with adenoma malignum of the cervix. Cancer. 1982;50(7):1384–402. https://doi.org/10.1002/1097-0142(19821001)50:7<1384::aid-cncr2820500726>3.0.co;2-5.

    Article  CAS  PubMed  Google Scholar 

  54. Gilks CB, Young RH, Aguirre P, DeLellis RA, Scully RE. Adenoma malignum (minimal deviation adenocarcinoma) of the uterine cervix. A clinicopathological and immunohistochemical analysis of 26 cases. Am J Surg Pathol. 1989;13(9):717–29. https://doi.org/10.1097/00000478-198909000-00001.

    Article  CAS  PubMed  Google Scholar 

  55. Chen KT. Female genital tract tumors in Peutz-Jeghers syndrome. Hum Pathol. 1986;17(8):858–61. https://doi.org/10.1016/s0046-8177(86)80208-8.

    Article  CAS  PubMed  Google Scholar 

  56. Mikami Y, Kiyokawa T, Hata S, Fujiwara K, Moriya T, Sasano H, et al. Gastrointestinal immunophenotype in adenocarcinomas of the uterine cervix and related glandular lesions: a possible link between lobular endocervical glandular hyperplasia/pyloric gland metaplasia and ‘adenoma malignum’. Mod Pathol. 2004;17(8):962–72. https://doi.org/10.1038/modpathol.3800148.

    Article  PubMed  Google Scholar 

  57. Hirasawa A, Akahane T, Tsuruta T, Kobayashi Y, Masuda K, Banno K, et al. Lobular endocervical glandular hyperplasia and peritoneal pigmentation associated with Peutz-Jeghers syndrome due to a germline mutation of STK11. Ann Oncol. 2012;23(11):2990–2. https://doi.org/10.1093/annonc/mds492.

    Article  CAS  PubMed  Google Scholar 

  58. Ito M, Minamiguchi S, Mikami Y, Ueda Y, Sekiyama K, Yamamoto T, et al. Peutz-Jeghers syndrome-associated atypical mucinous proliferation of the uterine cervix: a case of minimal deviation adenocarcinoma (‘adenoma malignum’) in situ. Pathol Res Pract. 2012;208(10):623–7. https://doi.org/10.1016/j.prp.2012.06.008.

    Article  PubMed  Google Scholar 

  59. Kobayashi Y, Masuda K, Kimura T, Nomura H, Hirasawa A, Banno K, et al. A tumor of the uterine cervix with a complex histology in a Peutz-Jeghers syndrome patient with genomic deletion of the STK11 exon 1 region. Future Oncol. 2014;10(2):171–7. https://doi.org/10.2217/fon.13.180.

    Article  CAS  PubMed  Google Scholar 

  60. Takei Y, Fujiwara H, Nagashima T, Takahashi Y, Takahashi S, Suzuki M. Successful pregnancy in a Peutz-Jeghers syndrome patient with lobular endocervical glandular hyperplasia. J Obstet Gynaecol Res. 2015;41(3):468–73. https://doi.org/10.1111/jog.12541.

    Article  PubMed  Google Scholar 

  61. Slade I, Bacchelli C, Davies H, Murray A, Abbaszadeh F, Hanks S, et al. DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet. 2011;48(4):273–8. https://doi.org/10.1136/jmg.2010.083790.

    Article  CAS  PubMed  Google Scholar 

  62. Schutlz KA, Stewart DR, Kamihara J, Bauer AJ, Merideth MA, Stratton P, et al. DICER1 tumor predisposition. In Gene reviews. https://www.ncbi.nlm.nih.gov/books/NBK196157/

  63. Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science. 2009;325(5943):965. https://doi.org/10.1126/science.1174334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Foulkes WD, Priest JR, Duchaine TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer. 2014;14(10):662–72. https://doi.org/10.1038/nrc3802.

    Article  CAS  PubMed  Google Scholar 

  65. Brenneman M, Field A, Yang J, Williams G, Doros L, Rossi C, et al. Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in pleuropulmonary blastoma/DICER1 syndrome: a unique variant of the two-hit tumor suppression model. F1000Res. 2015;4:214. https://doi.org/10.12688/f1000research.6746.2.

    Article  CAS  PubMed  Google Scholar 

  66. Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA, et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ. 2010;17(4):633–41. https://doi.org/10.1038/cdd.2009.202.

    Article  CAS  PubMed  Google Scholar 

  67. Schultz KAP, Williams GM, Kamihara J, Stewart DR, Harris AK, Bauer AJ, et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res. 2018;24(10):2251–61. https://doi.org/10.1158/1078-0432.Ccr-17-3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stewart DR, Best AF, Williams GM, Harney LA, Carr AG, Harris AK, et al. Neoplasm risk among individuals with a pathogenic germline variant in DICER1. J Clin Oncol. 2019;37(8):668–76. https://doi.org/10.1200/jco.2018.78.4678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Kock L, Terzic T, McCluggage WG, Stewart CJR, Shaw P, Foulkes WD, et al. DICER1 mutations are consistently present in moderately and poorly differentiated Sertoli-Leydig cell tumors. Am J Surg Pathol. 2017;41(9):1178–87. https://doi.org/10.1097/pas.0000000000000895.

    Article  PubMed  Google Scholar 

  70. Minard-Colin V, Walterhouse D, Bisogno G, Martelli H, Anderson J, Rodeberg DA, et al. Localized vaginal/uterine rhabdomyosarcoma-results of a pooled analysis from four international cooperative groups. Pediatr Blood Cancer. 2018;65(9):e27096. https://doi.org/10.1002/pbc.27096.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dehner LP, Jarzembowski JA, Hill DA. Embryonal rhabdomyosarcoma of the uterine cervix: a report of 14 cases and a discussion of its unusual clinicopathological associations. Mod Pathol. 2012;25(4):602–14. https://doi.org/10.1038/modpathol.2011.185.

    Article  PubMed  Google Scholar 

  72. de Kock L, Yoon JY, Apellaniz-Ruiz M, Pelletier D, McCluggage WG, Stewart CJR, et al. Significantly greater prevalence of DICER1 alterations in uterine embryonal rhabdomyosarcoma compared to adenosarcoma. Mod Pathol. 2020;33(6):1207–19. https://doi.org/10.1038/s41379-019-0436-0.

    Article  CAS  PubMed  Google Scholar 

  73. Jelinic P, Mueller JJ, Olvera N, Dao F, Scott SN, Shah R, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46(5):424–6. https://doi.org/10.1038/ng.2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, Hendricks WP, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet. 2014;46(5):427–9. https://doi.org/10.1038/ng.2928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N, Tomiak E, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 2014;46(5):438–43. https://doi.org/10.1038/ng.2931.

    Article  CAS  PubMed  Google Scholar 

  76. Witkowski L, Goudie C, Ramos P, Boshari T, Brunet JS, Karnezis AN, et al. The influence of clinical and genetic factors on patient outcome in small cell carcinoma of the ovary, hypercalcemic type. Gynecol Oncol. 2016;141(3):454–60. https://doi.org/10.1016/j.ygyno.2016.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sredni ST, Tomita T. Rhabdoid tumor predisposition syndrome. Pediatr Dev Pathol. 2015;18(1):49–58. https://doi.org/10.2350/14-07-1531-misc.1.

    Article  PubMed  Google Scholar 

  78. Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks WPD, Huntsman DG, et al. Small-cell carcinoma of the ovary, hypercalcemic type-genetics, new treatment targets, and current management guidelines. Clin Cancer Res. 2020;26(15):3908–17. https://doi.org/10.1158/1078-0432.Ccr-19-3797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kurian AW, Ward KC, Howlader N, Deapen D, Hamilton AS, Mariotto A, et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol. 2019;37(15):1305–15. https://doi.org/10.1200/jco.18.01854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suszynska M, Klonowska K, Jasinska AJ, Kozlowski P. Large-scale meta-analysis of mutations identified in panels of breast/ovarian cancer-related genes—providing evidence of cancer predisposition genes. Gynecol Oncol. 2019;153(2):452–62. https://doi.org/10.1016/j.ygyno.2019.01.027.

    Article  CAS  PubMed  Google Scholar 

  81. Ramus SJ, Song H, Dicks E, Tyrer JP, Rosenthal AN, Intermaggio MP, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015;107(11):djv214. https://doi.org/10.1093/jnci/djv214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lilyquist J, LaDuca H, Polley E, Davis BT, Shimelis H, Hu C, et al. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol Oncol. 2017;147(2):375–80. https://doi.org/10.1016/j.ygyno.2017.08.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kurian AW, Hughes E, Handorf EA, Gutin A, Allen B, Hartman AR, et al. Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women. JCO Precis Oncol. 2017;1:1–12. https://doi.org/10.1200/po.16.00066.

    PubMed  Google Scholar 

  84. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506. https://doi.org/10.1056/NEJMoa1400382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol. 2015;33(26):2901–7. https://doi.org/10.1200/jco.2015.61.2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87. https://doi.org/10.1038/gim.2014.147.

    Article  PubMed  Google Scholar 

  87. Lancaster JM, Powell CB, Chen LM, Richardson DL. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol. 2015;136(1):3–7. https://doi.org/10.1016/j.ygyno.2014.09.009.

    Article  PubMed  Google Scholar 

  88. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: US Preventive Services Task Force recommendation statement. J Am Med Assoc. 2019;322(7):652–65. https://doi.org/10.1001/jama.2019.10987.

    Article  Google Scholar 

  89. Robson ME, Bradbury AR, Arun B, Domchek SM, Ford JM, Hampel HL, et al. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2015;33(31):3660–7. https://doi.org/10.1200/jco.2015.63.0996.

    Article  CAS  PubMed  Google Scholar 

  90. Practice bulletin no182: hereditary breast and ovarian cancer syndrome. Obstet Gynecol. 2017;130(3):e110–26. https://doi.org/10.1097/AOG.0000000000002296.

  91. Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62(1):145–58. https://doi.org/10.1086/301670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90. https://doi.org/10.1038/sj.bjc.6602175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kastrinos F, Uno H, Ukaegbu C, Alvero C, McFarland A, Yurgelun MB, et al. Development and validation of the PREMM(5) model for comprehensive risk assessment of Lynch syndrome. J Clin Oncol. 2017;35(19):2165–72. https://doi.org/10.1200/jco.2016.69.6120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barnetson RA, Tenesa A, Farrington SM, Nicholl ID, Cetnarskyj R, Porteous ME, et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med. 2006;354(26):2751–63. https://doi.org/10.1056/NEJMoa053493.

    Article  CAS  PubMed  Google Scholar 

  95. Chen S, Wang W, Lee S, Nafa K, Lee J, Romans K, et al. Prediction of germline mutations and cancer risk in the Lynch syndrome. J Am Med Assoc. 2006;296(12):1479–87. https://doi.org/10.1001/jama.296.12.1479.

    Article  CAS  Google Scholar 

  96. Vogel KJ, Atchley DP, Erlichman J, Broglio KR, Ready KJ, Valero V, et al. BRCA1 and BRCA2 genetic testing in Hispanic patients: mutation prevalence and evaluation of the BRCAPRO risk assessment model. J Clin Oncol. 2007;25(29):4635–41. https://doi.org/10.1200/jco.2006.10.4703.

    Article  PubMed  Google Scholar 

  97. Kurian AW, Gong GD, John EM, Miron A, Felberg A, Phipps AI, et al. Performance of prediction models for BRCA mutation carriage in three racial/ethnic groups: findings from the Northern California Breast Cancer Family Registry. Cancer Epidemiol Biomark Prev. 2009;18(4):1084–91. https://doi.org/10.1158/1055-9965.Epi-08-1090.

    Article  CAS  Google Scholar 

  98. Kurian AW, Gong GD, Chun NM, Mills MA, Staton AD, Kingham KE, et al. Performance of BRCA1/2 mutation prediction models in Asian Americans. J Clin Oncol. 2008;26(29):4752–8. https://doi.org/10.1200/jco.2008.16.8310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Biswas S, Tankhiwale N, Blackford A, Barrera AM, Ready K, Lu K, et al. Assessing the added value of breast tumor markers in genetic risk prediction model BRCAPRO. Breast Cancer Res Treat. 2012;133(1):347–55. https://doi.org/10.1007/s10549-012-1958-z.

    Article  CAS  PubMed  Google Scholar 

  100. Ready KJ, Vogel KJ, Atchley DP, Broglio KR, Solomon KK, Amos C, et al. Accuracy of the BRCAPRO model among women with bilateral breast cancer. Cancer. 2009;115(4):725–30. https://doi.org/10.1002/cncr.24102.

    Article  PubMed  Google Scholar 

  101. Daniels MS, Babb SA, King RH, Urbauer DL, Batte BA, Brandt AC, et al. Underestimation of risk of a BRCA1 or BRCA2 mutation in women with high-grade serous ovarian cancer by BRCAPRO: a multi-institution study. J Clin Oncol. 2014;32(12):1249–55. https://doi.org/10.1200/jco.2013.50.6055.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–95. https://doi.org/10.1200/jco.18.00283.

    Article  CAS  PubMed  Google Scholar 

  103. Mandelker D, Donoghue M, Talukdar S, Bandlamudi C, Srinivasan P, Vivek M, et al. Germline-focussed analysis of tumour-only sequencing: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol. 2019;30(8):1221–31. https://doi.org/10.1093/annonc/mdz136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tandy-Connor S, Guiltinan J, Krempely K, LaDuca H, Reineke P, Gutierrez S, et al. False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet Med. 2018;20(12):1515–21. https://doi.org/10.1038/gim.2018.38.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beitsch PD, Whitworth PW, Hughes K, Patel R, Rosen B, Compagnoni G, et al. underdiagnosis of hereditary breast cancer: are genetic testing guidelines a tool or an obstacle? J Clin Oncol. 2019;37(6):453–60. https://doi.org/10.1200/jco.18.01631.

    Article  PubMed  Google Scholar 

  106. Yadav S, Hu C, Hart SN, Boddicker N, Polley EC, Na J, et al. Evaluation of germline genetic testing criteria in a hospital-based series of women with breast cancer. J Clin Oncol. 2020;38(13):1409–18. https://doi.org/10.1200/jco.19.02190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ward M, Elder B, Habtemariam M. Current testing guidelines: a retrospective analysis of a community-based hereditary cancer program. J Adv Pract Oncol. 2021;12(7):693–701. https://doi.org/10.6004/jadpro.2021.12.7.3.

    PubMed  PubMed Central  Google Scholar 

  108. Kurian AW, Ward KC, Hamilton AS, Deapen DM, Abrahamse P, Bondarenko I, et al. Uptake, results, and outcomes of germline multiple-gene sequencing after diagnosis of breast cancer. JAMA Oncol. 2018;4(8):1066–72. https://doi.org/10.1001/jamaoncol.2018.0644.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Resta R, Biesecker BB, Bennett RL, Blum S, Hahn SE, Strecker MN, et al. A new definition of Genetic Counseling: National Society of Genetic Counselors’ Task Force report. J Genet Couns. 2006;15(2):77–83. https://doi.org/10.1007/s10897-005-9014-3.

    Article  PubMed  Google Scholar 

  110. Kast K, Rhiem K, Wappenschmidt B, Hahnen E, Hauke J, Bluemcke B, et al. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet. 2016;53(7):465–71. https://doi.org/10.1136/jmedgenet-2015-103672.

    Article  CAS  PubMed  Google Scholar 

  111. Passaperuma K, Warner E, Causer PA, Hill KA, Messner S, Wong JW, et al. Long-term results of screening with magnetic resonance imaging in women with BRCA mutations. Br J Cancer. 2012;107(1):24–30. https://doi.org/10.1038/bjc.2012.204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lehman CD, Lee JM, DeMartini WB, Hippe DS, Rendi MH, Kalish G, et al. Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst. 2016;108(3):djv349. https://doi.org/10.1093/jnci/djv349.

    Article  PubMed  Google Scholar 

  113. Konstantinopoulos PA, Norquist B, Lacchetti C, Armstrong D, Grisham RN, Goodfellow PJ, et al. Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J Clin Oncol. 2020;38(11):1222–45. https://doi.org/10.1200/jco.19.02960.

    Article  PubMed  Google Scholar 

  114. Paluch-Shimon S, Cardoso F, Sessa C, Balmana J, Cardoso MJ, Gilbert F, et al. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening. Ann Oncol. 2016;27(suppl 5):v103–v10. https://doi.org/10.1093/annonc/mdw327.

    Article  CAS  PubMed  Google Scholar 

  115. Finch AP, Lubinski J, Møller P, Singer CF, Karlan B, Senter L, et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol. 2014;32(15):1547–53. https://doi.org/10.1200/jco.2013.53.2820.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101(2):80–7. https://doi.org/10.1093/jnci/djn442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kauff ND, Domchek SM, Friebel TM, Robson ME, Lee J, Garber JE, et al. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol. 2008;26(8):1331–7. https://doi.org/10.1200/jco.2007.13.9626.

    Article  PubMed  Google Scholar 

  118. Callahan MJ, Crum CP, Medeiros F, Kindelberger DW, Elvin JA, Garber JE, et al. Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol. 2007;25(25):3985–90. https://doi.org/10.1200/jco.2007.12.2622.

    Article  PubMed  Google Scholar 

  119. Powell CB, Kenley E, Chen LM, Crawford B, McLennan J, Zaloudek C, et al. Risk-reducing salpingo-oophorectomy in BRCA mutation carriers: role of serial sectioning in the detection of occult malignancy. J Clin Oncol. 2005;23(1):127–32. https://doi.org/10.1200/jco.2005.04.109.

    Article  PubMed  Google Scholar 

  120. Finch A, Shaw P, Rosen B, Murphy J, Narod SA, Colgan TJ. Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecol Oncol. 2006;100(1):58–64. https://doi.org/10.1016/j.ygyno.2005.06.065.

    Article  CAS  PubMed  Google Scholar 

  121. Harmsen MG, Piek JMJ, Bulten J, Casey MJ, Rebbeck TR, Mourits MJ, et al. Peritoneal carcinomatosis after risk-reducing surgery in BRCA1/2 mutation carriers. Cancer. 2018;124(5):952–9. https://doi.org/10.1002/cncr.31211.

    Article  CAS  PubMed  Google Scholar 

  122. Marchetti C, De Felice F, Boccia S, Sassu C, Di Donato V, Perniola G, et al. Hormone replacement therapy after prophylactic risk-reducing salpingo-oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a meta-analysis. Crit Rev Oncol Hematol. 2018;132:111–5. https://doi.org/10.1016/j.critrevonc.2018.09.018.

    Article  CAS  PubMed  Google Scholar 

  123. Gordhandas S, Norquist BM, Pennington KP, Yung RL, Laya MB, Swisher EM. Hormone replacement therapy after risk reducing salpingo-oophorectomy in patients with BRCA1 or BRCA2 mutations; a systematic review of risks and benefits. Gynecol Oncol. 2019;153(1):192–200. https://doi.org/10.1016/j.ygyno.2018.12.014.

    Article  CAS  PubMed  Google Scholar 

  124. Kotsopoulos J, Huzarski T, Gronwald J, Moller P, Lynch HT, Neuhausen SL, et al. Hormone replacement therapy after menopause and risk of breast cancer in BRCA1 mutation carriers: a case-control study. Breast Cancer Res Treat. 2016;155(2):365–73. https://doi.org/10.1007/s10549-016-3685-3.

    Article  CAS  PubMed  Google Scholar 

  125. Chlebowski RT, Anderson GL, Aragaki AK, Manson JE, Stefanick ML, Pan K, et al. Association of menopausal hormone therapy with breast cancer incidence and mortality during long-term follow-up of the women’s health initiative randomized clinical trials. J Am Med Assoc. 2020;324(4):369–80. https://doi.org/10.1001/jama.2020.9482.

    Article  CAS  Google Scholar 

  126. Harmsen MG, IntHout J, Arts-de Jong M, Hoogerbrugge N, Massuger L, Hermens R, et al. Salpingectomy with delayed oophorectomy in BRCA1/2 mutation carriers: estimating ovarian cancer risk. Obstet Gynecol. 2016;127(6):1054–63. https://doi.org/10.1097/aog.0000000000001448.

    Article  CAS  PubMed  Google Scholar 

  127. Daly MB, Dresher CW, Yates MS, Jeter JM, Karlan BY, Alberts DS, et al. Salpingectomy as a means to reduce ovarian cancer risk. Cancer Prev Res (Phila). 2015;8(5):342–8. https://doi.org/10.1158/1940-6207.Capr-14-0293.

    Article  Google Scholar 

  128. Beral V, Doll R, Hermon C, Peto R, Reeves G. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet. 2008;371(9609):303–14. https://doi.org/10.1016/s0140-6736(08)60167-1.

    Article  CAS  PubMed  Google Scholar 

  129. Iodice S, Barile M, Rotmensz N, Feroce I, Bonanni B, Radice P, et al. Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer. 2010;46(12):2275–84. https://doi.org/10.1016/j.ejca.2010.04.018.

    Article  CAS  PubMed  Google Scholar 

  130. Cibula D, Zikan M, Dusek L, Majek O. Oral contraceptives and risk of ovarian and breast cancers in BRCA mutation carriers: a meta-analysis. Expert Rev Anticancer Ther. 2011;11(8):1197–207. https://doi.org/10.1586/era.11.38.

    Article  CAS  PubMed  Google Scholar 

  131. Moorman PG, Havrilesky LJ, Gierisch JM, Coeytaux RR, Lowery WJ, Peragallo Urrutia R, et al. Oral contraceptives and risk of ovarian cancer and breast cancer among high-risk women: a systematic review and meta-analysis. J Clin Oncol. 2013;31(33):4188–98. https://doi.org/10.1200/jco.2013.48.9021.

    Article  CAS  PubMed  Google Scholar 

  132. Narod SA, Dubé MP, Klijn J, Lubinski J, Lynch HT, Ghadirian P, et al. Oral contraceptives and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2002;94(23):1773–9. https://doi.org/10.1093/jnci/94.23.1773.

    Article  CAS  PubMed  Google Scholar 

  133. Haile RW, Thomas DC, McGuire V, Felberg A, John EM, Milne RL, et al. BRCA1 and BRCA2 mutation carriers, oral contraceptive use, and breast cancer before age 50. Cancer Epidemiol Biomark Prev. 2006;15(10):1863–70. https://doi.org/10.1158/1055-9965.Epi-06-0258.

    Article  CAS  Google Scholar 

  134. Milne RL, Knight JA, John EM, Dite GS, Balbuena R, Ziogas A, et al. Oral contraceptive use and risk of early-onset breast cancer in carriers and noncarriers of BRCA1 and BRCA2 mutations. Cancer Epidemiol Biomark Prev. 2005;14(2):350–6. https://doi.org/10.1158/1055-9965.Epi-04-0376.

    Article  CAS  Google Scholar 

  135. Lee E, Ma H, McKean-Cowdin R, Van Den Berg D, Bernstein L, Henderson BE, et al. Effect of reproductive factors and oral contraceptives on breast cancer risk in BRCA1/2 mutation carriers and noncarriers: results from a population-based study. Cancer Epidemiol Biomark Prev. 2008;17(11):3170–8. https://doi.org/10.1158/1055-9965.Epi-08-0396.

    Article  CAS  Google Scholar 

  136. Ding YC, Steele L, Kuan CJ, Greilac S, Neuhausen SL. Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat. 2011;126(3):771–8. https://doi.org/10.1007/s10549-010-1195-2.

    Article  CAS  PubMed  Google Scholar 

  137. Friedman LS, Gayther SA, Kurosaki T, Gordon D, Noble B, Casey G, et al. Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population. Am J Hum Genet. 1997;60(2):313–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Evans DG, Susnerwala I, Dawson J, Woodward E, Maher ER, Lalloo F. Risk of breast cancer in male BRCA2 carriers. J Med Genet. 2010;47(10):710–1. https://doi.org/10.1136/jmg.2009.075176.

    Article  CAS  PubMed  Google Scholar 

  139. Tai YC, Domchek S, Parmigiani G, Chen S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99(23):1811–4. https://doi.org/10.1093/jnci/djm203.

    Article  CAS  PubMed  Google Scholar 

  140. Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106(10):1697–701. https://doi.org/10.1038/bjc.2012.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, Barron D, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol. 2017;2017:PO.17.00029. https://doi.org/10.1200/po.17.00029.

    Google Scholar 

  142. Giri VN, Hegarty SE, Hyatt C, O’Leary E, Garcia J, Knudsen KE, et al. Germline genetic testing for inherited prostate cancer in practice: implications for genetic testing, precision therapy, and cascade testing. Prostate. 2019;79(4):333–9. https://doi.org/10.1002/pros.23739.

    Article  CAS  PubMed  Google Scholar 

  143. Lang SH, Swift SL, White H, Misso K, Kleijnen J, Quek RGW. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int J Oncol. 2019;55(3):597–616. https://doi.org/10.3892/ijo.2019.4842.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Goggins M, Overbeek KA, Brand R, Syngal S, Del Chiaro M, Bartsch DK, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7–17. https://doi.org/10.1136/gutjnl-2019-319352.

    Article  CAS  PubMed  Google Scholar 

  145. Canto MI, Almario JA, Schulick RD, Yeo CJ, Klein A, Blackford A, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology. 2018;155(3):740–51.e2. https://doi.org/10.1053/j.gastro.2018.05.035.

    Article  PubMed  Google Scholar 

  146. Vasen H, Ibrahim I, Ponce CG, Slater EP, Matthäi E, Carrato A, et al. Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European expert centers. J Clin Oncol. 2016;34(17):2010–9. https://doi.org/10.1200/jco.2015.64.0730.

    Article  CAS  PubMed  Google Scholar 

  147. Balmaña J, Balaguer F, Cervantes A, Arnold D. Familial risk-colorectal cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 2013;24(Suppl 6):vi73–80. https://doi.org/10.1093/annonc/mdt209.

    Article  PubMed  Google Scholar 

  148. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2014;147(2):502–26. https://doi.org/10.1053/j.gastro.2014.04.001.

    Article  PubMed  Google Scholar 

  149. Stoffel EM, Mangu PB, Gruber SB, Hamilton SR, Kalady MF, Lau MW, et al. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology Clinical Practice Guidelines. J Clin Oncol. 2015;33(2):209–17. https://doi.org/10.1200/jco.2014.58.1322.

    Article  PubMed  Google Scholar 

  150. Rubenstein JH, Enns R, Heidelbaugh J, Barkun A. American Gastroenterological Association Institute Guideline on the diagnosis and management of Lynch syndrome. Gastroenterology. 2015;149(3):777–82; quiz e16-7. https://doi.org/10.1053/j.gastro.2015.07.036.

    Article  PubMed  Google Scholar 

  151. Lindor NM, Petersen GM, Hadley DW, Kinney AY, Miesfeldt S, Lu KH, et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. J Am Med Assoc. 2006;296(12):1507–17. https://doi.org/10.1001/jama.296.12.1507.

    Article  CAS  Google Scholar 

  152. Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62; quiz 63. https://doi.org/10.1038/ajg.2014.435.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tzortzatos G, Andersson E, Soller M, Askmalm MS, Zagoras T, Georgii-Hemming P, et al. The gynecological surveillance of women with Lynch syndrome in Sweden. Gynecol Oncol. 2015;138(3):717–22. https://doi.org/10.1016/j.ygyno.2015.07.016.

    Article  PubMed  Google Scholar 

  154. Gerritzen LH, Hoogerbrugge N, Oei AL, Nagengast FM, van Ham MA, Massuger LF, et al. Improvement of endometrial biopsy over transvaginal ultrasound alone for endometrial surveillance in women with Lynch syndrome. Familial Cancer. 2009;8(4):391–7. https://doi.org/10.1007/s10689-009-9252-x.

    Article  PubMed  PubMed Central  Google Scholar 

  155. ACOG practive bulletin no.147: Lynch syndrome. Obstet Gynecol. 2014;124(5):1042–54. https://doi.org/10.1097/01.ACOG.0000456435.50739.72.

  156. Schmeler KM, Lynch HT, Chen LM, Munsell MF, Soliman PT, Clark MB, et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N Engl J Med. 2006;354(3):261–9. https://doi.org/10.1056/NEJMoa052627.

    Article  CAS  PubMed  Google Scholar 

  157. Bancroft EK, Page EC, Brook MN, Thomas S, Taylor N, Pope J, et al. A prospective prostate cancer screening program for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol. 2021;22(11):1618–31. https://doi.org/10.1016/s1470-2045(21)00522-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bubien V, Bonnet F, Brouste V, Hoppe S, Barouk-Simonet E, David A, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50(4):255–63. https://doi.org/10.1136/jmedgenet-2012-101339.

    Article  CAS  PubMed  Google Scholar 

  159. Riegert-Johnson DL, Gleeson FC, Roberts M, Tholen K, Youngborg L, Bullock M, et al. Cancer and Lhermitte-Duclos disease are common in Cowden syndrome patients. Hered Cancer Clin Pract. 2010;8(1):6. https://doi.org/10.1186/1897-4287-8-6.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schultz KAP, Rednam SP, Kamihara J, Doros L, Achatz MI, Wasserman JD, et al. PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e76–82. https://doi.org/10.1158/1078-0432.Ccr-17-0629.

    Article  CAS  PubMed  Google Scholar 

  161. Takatsu A, Shiozawa T, Miyamoto T, Kurosawa K, Kashima H, Yamada T, Kaku T, Mikami Y, Kiyokawa T, Tsuda H, Ishii K, Togashi K, Koyama T, Fujinaga Y, Kadoya M, Hashi A, Susumu N, Konishi I. Preoperative differential diagnosis of minimal deviation adenocarcinoma and lobular endocervical glandular hyperplasia of the uterine cervix. Int J Gynecol Cancer. 2011;21(7):1287–96. https://doi.org/10.1097/IGC.0b013e31821f746c.

Download references

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayaka Ueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ueno, S., Hirasawa, A. (2022). Risk Assessment and Prevention Strategies for Hereditary Gynecological Cancers. In: Mandai, M. (eds) Personalization in Gynecologic Oncology. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-19-4711-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4711-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4710-0

  • Online ISBN: 978-981-19-4711-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics