Skip to main content

Hybrid Texture-Based Feature Extraction Model for Brain Tumour Classification Using Machine Learning

  • Conference paper
  • First Online:
Emerging Technologies in Data Mining and Information Security

Abstract

The effort of detecting brain tumours by radiologists or clinical experts is arduous and time-consuming, and their accuracy is dependent on their level of knowledge. Medical scans, such as magnetic resonance imaging (MRI), provide a wealth of data that can be exploited to overcome these constraints by creating advanced methodologies and approaches for tumour detection. These approaches can assist radiologists in offering a second opinion when predicting tumours, hence reducing the human aspect in the process. In this context, the paper proposes a hybrid texture-based feature extraction (HTFE) technique by employing Grey level co-occurrence matrix (GLCM) and Gabor Filters for identifying brain tumours. Specially, the proposed HTFE technique assists the classifiers Gradient Boosting (GB), Random Forest (RF), and Decision Tree (DT) in predicting Glioma, Meningioma, and Pituitary brain tumours from T1-weighted contrast-enhanced MRI (T1-CEMRI) dataset. To train and evaluate the classifiers, the HTFE technique extracts a total of seventy-two second order texture features from T1-CEMRI. In terms of accuracy, the suggested HTFE approach beats state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.P. Jena, D.L. Gatti, S. Arslanturk, S. Pernal, D.J. Taatjes, Human skeletal muscle cell atlas: Unraveling cellular secrets utilizing ‘muscle-on-a-chip’, differential expansion microscopy, mass spectrometry, nanothermometry and machine learning. Micron 117, 55–59 (2019). https://doi.org/10.1016/j.micron.2018.11.002

    Article  Google Scholar 

  2. S. Siuly, Y. Zhang, Medical big data: neurological diseases diagnosis through medical data analysis. Data Sci. Eng. 1(2), 54–64 (Jun. 01, 2016). https://doi.org/10.1007/s41019-016-0011-3

  3. J. Taranda, S. Turcan, 3d whole-brain imaging approaches to study brain tumors. Cancers 13(8). MDPI AG (Apr. 02, 2021). https://doi.org/10.3390/cancers13081897

  4. O. Commowick, F. Cervenansky, F. Cotton, M. Dojat, MSSEG-2 challenge proceedings: multiple sclerosis new lesions segmentation challenge using a data management and processing infrastructure (2021). [Online]. http://portal.fli-iam.irisa.fr/msseg-2/

  5. S. Hussain, S.M. Anwar, M. Majid, Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018). https://doi.org/10.1016/j.neucom.2017.12.032

    Article  Google Scholar 

  6. S.M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, M.K. Khan, Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42(11) (Nov. 01, 2018). https://doi.org/10.1007/s10916-018-1088-1

  7. M.W. Nadeem et al., Brain tumor analysis empowered with deep learning: a review, taxonomy, and future challenges. Brain Sci. 10(2). MDPI AG (Feb. 01, 2020). https://doi.org/10.3390/brainsci10020118

  8. K. Kaplan, Y. Kaya, M. Kuncan, H.M. Ertunç, Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med. Hypotheses 139 (Jun. 2020). https://doi.org/10.1016/j.mehy.2020.109696

  9. V. Rajinikanth, N. Sri, M. Raja, K. Kamalanand, Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov Random Field (2017). [Online]. https://www.researchgate.net/publication/320431856

  10. S.H. Wady, R.Z. Yousif, H.R. Hasan, A novel intelligent system for brain tumor diagnosis based on a composite neutrosophic-slantlet transform domain for statistical texture feature extraction. BioMed Res. Int. (2020). https://doi.org/10.1155/2020/8125392

  11. K.B. Vaishnavee, K. Amshakala, An automated MRI brain image segmentation and tumor detection using SOM-clustering and Proximal Support Vector Machine classifier (Sep. 2015). https://doi.org/10.1109/ICETECH.2015.7275030

  12. Jouf University and Institute of Electrical and Electronics Engineers, 2019 International Conference on Computer and Information Sciences (ICCIS) : Jouf University-Aljouf-kingdom of Saudi Arabia, 03–04 April 2019

    Google Scholar 

  13. J.S. Paul, A.J. Plassard, B.A. Landman, D. Fabbri, in Deep Learning for Brain Tumor Classification, Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, Mar. 2017, vol. 10137, p. 1013710. https://doi.org/10.1117/12.2254195

  14. A. Subudhi, M. Dash, S. Sabut, Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern. Biomed. Eng. 40(1), 277–289 (2020). https://doi.org/10.1016/j.bbe.2019.04.004

    Article  Google Scholar 

  15. W. Widhiarso, Y. Yohannes, C. Prakarsah, Brain tumor classification using gray level co-occurrence matrix and convolutional neural network. IJEIS (Indonesian J. Electron. Instrum. Syst.) 8(2), 179 (2018). https://doi.org/10.22146/ijeis.34713

    Article  Google Scholar 

  16. T.P.B. Bhat, K. Prakash, Detection and classification of tumour in brain MRI. Int. J. Eng. Manuf. 9(1) (11–20 Jan. 2019). https://doi.org/10.5815/ijem.2019.01.02

  17. E. Vazquez-Fernandez, A. Dacal-Nieto, F. Martin, S. Torres-Guijarro, Entropy of Gabor Filtering for Image Quality Assessment

    Google Scholar 

  18. S.R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991). https://doi.org/10.1109/21.97458

    Article  MathSciNet  Google Scholar 

  19. J. Ali, R. Khan, N. Ahmad, I. Maqsood, Random Forests and Decision Trees (2012). [Online]. www.IJCSI.org

  20. A. Natekin, A. Knoll, Gradient boosting machines, a tutorial. Front. Neurorobotics 7 (no. DEC, 2013). https://doi.org/10.3389/fnbot.2013.00021

  21. J. Cheng et al., Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10) (Oct. 2015). https://doi.org/10.1371/journal.pone.0140381

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishfaq Hussain Rather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rather, I.H., Minz, S., Kumar, S. (2023). Hybrid Texture-Based Feature Extraction Model for Brain Tumour Classification Using Machine Learning. In: Dutta, P., Bhattacharya, A., Dutta, S., Lai, WC. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 1348. Springer, Singapore. https://doi.org/10.1007/978-981-19-4676-9_38

Download citation

Publish with us

Policies and ethics