Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 325))

  • 534 Accesses

Abstract

The characterization approach is one of the most challenging aspects of researching carbon-based nanomaterials, particularly carbon-based catalysts with defects and atomically dispersion. It's difficult to precisely identify the active sites of catalysts using early characterization approaches, which makes disclosing the catalytic mechanism and constructing high-efficiency catalysts challenging. High-efficiency carbon-based catalysts have improved in recent years, thanks to extensive use of current characterization techniques (e.g., ex-situ, in-situ, and operando) and simulation calculation approaches (e.g., first-principles and molecular dynamics simulation calculations). This chapter emphasizes the characterization methodologies that reveal the true active sites, catalytic processes, and structure–activity relationships of carbon-based nanomaterials from three perspectives: direct visualization, indirect validation, and simulation calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo, M.T. Sougrati, I.C. Oguz, T. Mineva, D. Teschner, S. Wagner, J. Wen, F. Dionigi, U.I. Kramm, J. Rossmeisl, F. Jaouen, P. Strasser, P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19, 1215–1223 (2020). https://doi.org/10.1038/s41563-020-0717-5

    Article  CAS  Google Scholar 

  2. X. Chen, M. Peng, X. Cai, Y. Chen, Z. Jia, Y. Deng, B. Mei, Z. Jiang, D. Xiao, X. Wen, N. Wang, H. Liu, D. Ma, Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 12, 2664 (2021). https://doi.org/10.1038/s41467-021-22948-w

    Article  CAS  Google Scholar 

  3. T. Wang, X. Cao, H. Qin, L. Shang, S. Zheng, F. Fang, L. Jiao, P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 21237–21241 (2021). https://doi.org/10.1002/anie.202108599

    Article  CAS  Google Scholar 

  4. Z. Xiao, C. Xie, Y. Wang, R. Chen, S. Wang, Recent advances in defect electrocatalysts: Preparation and characterization. J. Energy Chem. 53, 208–225 (2021). https://doi.org/10.1016/j.jechem.2020.04.063

    Article  Google Scholar 

  5. W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–N(x). J. Am. Chem. Soc. 138, 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757

    Article  CAS  Google Scholar 

  6. L. Guo, S. Hwang, B. Li, F. Yang, M. Wang, M. Chen, X. Yang, S.G. Karakalos, D.A. Cullen, Z. Feng, G. Wang, G. Wu, H. Xu, Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: Unveiling intrinsic activity and degradation in fuel cells. ACS Nano 15, 6886–6899 (2021). https://doi.org/10.1021/acsnano.0c10637

    Article  CAS  Google Scholar 

  7. R.R. Shahi, O.N. Srivastava, WITHDRAWN: Carbon nanomaterials as catalysts for hydrogen uptake and release by nanocrystalline MgH2. J. Phys. Chem. Solids (2013). https://doi.org/10.1016/j.jpcs.2013.06.015

    Article  Google Scholar 

  8. P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su, Q. Chen, Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv. Mater. 30, 1705324 (2018). https://doi.org/10.1002/adma.201705324

    Article  CAS  Google Scholar 

  9. Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X.F. Wang, Q. Ma, G.W. Brudvig, V.S. Batista, Y. Liang, Z. Feng, H. Wang, Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018). https://doi.org/10.1038/s41467-018-02819-7

    Article  CAS  Google Scholar 

  10. D.A. Welch, B.L. Mehdi, H.J. Hatchell, R. Faller, J.E. Evans, N.D. Browning, Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM. Adv. Struct. Chem. Imaging 1, 1 (2015). https://doi.org/10.1186/s40679-014-0002-2

    Article  Google Scholar 

  11. D. Liu, K. Ni, J. Ye, J. Xie, Y. Zhu, L. Song, Tailoring the structure of carbon nanomaterials toward high-end energy applications. Adv. Mater. 30, e1802104 (2018). https://doi.org/10.1002/adma.201802104

    Article  CAS  Google Scholar 

  12. J.C. Dong, X.G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z.L. Yang, D.Y. Wu, J.M. Feliu, C.T. Williams, Z.Q. Tian, J.F. Li, In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2018). https://doi.org/10.1038/s41560-018-0292-z

    Article  CAS  Google Scholar 

  13. J. Zhang, Z. Gao, S. Wang, G. Wang, X. Gao, B. Zhang, S. Xing, S. Zhao, Y. Qin, Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nat. Commun. 10, 4166 (2019). https://doi.org/10.1038/s41467-019-11970-8

    Article  CAS  Google Scholar 

  14. M. Chen, X. Li, F. Yang, B. Li, T. Stracensky, S. Karakalos, S. Mukerjee, Q. Jia, D. Su, G. Wang, G. Wu, H. Xu, Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: Mechanistic understanding of activity and stability improvements. ACS Catal. 10, 10523–10534 (2020). https://doi.org/10.1021/acscatal.0c02490

    Article  CAS  Google Scholar 

  15. H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10, 1903030 (2020). https://doi.org/10.1002/aenm.201903030

    Article  CAS  Google Scholar 

  16. F. Huang, Z. Jia, J. Diao, H. Yuan, D. Su, H. Liu, Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. J. Energy Chem. 33, 31–36 (2019). https://doi.org/10.1016/j.jechem.2018.08.006

    Article  Google Scholar 

  17. J. King, C. Liu, S.S.C. Chuang, In situ infrared approach to unravel reaction intermediates and pathways on catalyst surfaces. Res. Chem. Intermed. 45, 5831–5847 (2019). https://doi.org/10.1007/s11164-019-04004-x

    Article  CAS  Google Scholar 

  18. X. Li, H.Y. Wang, H. Yang, W. Cai, S. Liu, B. Liu, In situ/Operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods 2, 1700395 (2018). https://doi.org/10.1002/smtd.201700395

    Article  CAS  Google Scholar 

  19. A.D. Handoko, F. Wei, B.S. Jenndy, Z.W.S. Yeo, Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018). https://doi.org/10.1038/s41929-018-0182-6

    Article  CAS  Google Scholar 

  20. J. Wang, G. Han, L. Wang, L. Du, G. Chen, Y. Gao, Y. Ma, C. Du, X. Cheng, P. Zuo, G. Yin, ZIF-8 with ferrocene encapsulated: A promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 14, 1704282 (2018). https://doi.org/10.1002/smll.201704282

    Article  CAS  Google Scholar 

  21. Y. Wang, W. Cheng, P. Yuan, G. Yang, S. Mu, J. Liang, H. Xia, K. Guo, M. Liu, S. Zhao, G. Qu, B.A. Lu, Y. Hu, J. Hu, J.N. Zhang, Boosting nitrogen reduction to ammonia on FeN4 sites by atomic spin regulation. Adv. Sci. 8, e2102915 (2021). https://doi.org/10.1002/advs.202102915

    Article  CAS  Google Scholar 

  22. M. Xiao, J. Zhu, G. Li, N. Li, S. Li, Z.P. Cano, L. Ma, P. Cui, P. Xu, G. Jiang, H. Jin, S. Wang, T. Wu, J. Lu, A. Yu, D. Su, Z. Chen, A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58, 9640–9645 (2019). https://doi.org/10.1002/anie.201905241

    Article  CAS  Google Scholar 

  23. P. Tieu, X. Yan, M. Xu, P. Christopher, X. Pan, Directly probing the local coordination, charge state, and stability of single atom catalysts by advanced electron microscopy: A review. Small 17, e2006482 (2021). https://doi.org/10.1002/small.202006482

    Article  Google Scholar 

  24. R. Qin, K. Liu, Q. Wu, N. Zheng, Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020). https://doi.org/10.1021/acs.chemrev.0c00094

    Article  CAS  Google Scholar 

  25. M.W. Glasscott, A.D. Pendergast, M.H. Choudhury, J.E. Dick, Advanced characterization techniques for evaluating porosity, nanopore tortuosity, and electrical connectivity at the single-nanoparticle level. ACS Appl. Nano Mater. 2, 819–830 (2018). https://doi.org/10.1021/acsanm.8b02051

    Article  CAS  Google Scholar 

  26. Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C. Feng, D. Zhao, F. Xiao, X. Zhu, Y. Zeng, M. Shao, S. Chen, G. Wu, J. Zeng, C. Wang, Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 12217–12314 (2020). https://doi.org/10.1021/acs.chemrev.0c00594

    Article  CAS  Google Scholar 

  27. S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4, 3889–3896 (2010). https://doi.org/10.1021/nn100681d

    Article  CAS  Google Scholar 

  28. Y. Han, Y.G. Wang, W. Chen, R. Xu, L. Zheng, J. Zhang, J. Luo, R.A. Shen, Y. Zhu, W.C. Cheong, C. Chen, Q. Peng, D. Wang, Y. Li, Hollow N-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139, 17269–17272 (2017). https://doi.org/10.1021/jacs.7b10194

    Article  CAS  Google Scholar 

  29. L. Zhou, P. Zhou, Y. Zhang, B. Liu, P. Gao, S. Guo, 3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. J. Energy Chem. 55, 355–360 (2021). https://doi.org/10.1016/j.jechem.2020.06.059

    Article  Google Scholar 

  30. J. Chen, Z. Ou, H. Chen, S. Song, K. Wang, Y. Wang, Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. Chin. J. Catal. 42, 1297–1326 (2021). https://doi.org/10.1016/s1872-2067(20)63736-6

    Article  CAS  Google Scholar 

  31. J. Pan, S. Yu, Z. Jing, Q. Zhou, Y. Dong, X. Lou, F. Xia, Electrocatalytic hydrogen evolution reaction related to nanochannel materials. Small Struct. 2, 2100076 (2021). https://doi.org/10.1002/sstr.202100076

    Article  CAS  Google Scholar 

  32. C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun, H.T. Kim, K.J. Mayrhofer, H. Kim, M. Choi, Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922

    Article  CAS  Google Scholar 

  33. Y. Shang, X. Duan, S. Wang, Q. Yue, B. Gao, X. Xu, Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.07.050

    Article  Google Scholar 

  34. L.Z. Zhang, Y. Jia, G.P. Gao, X.C. Yan, N. Chen, J. Chen, M.T. Soo, B. Wood, D.J. Yang, A.J. Du, X.D. Yao, Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005

    Article  CAS  Google Scholar 

  35. L. Fan, P.F. Liu, X. Yan, L. Gu, Z.Z. Yang, H.G. Yang, S. Qiu, X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016). https://doi.org/10.1038/ncomms10667

    Article  CAS  Google Scholar 

  36. H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay, Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017). https://doi.org/10.1126/science.aan2255

    Article  CAS  Google Scholar 

  37. X. Dai, Z. Chen, T. Yao, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, S. Wei, Y. Wu, Y. Li, Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 53, 11568–11571 (2017). https://doi.org/10.1039/c7cc04820c

    Article  CAS  Google Scholar 

  38. P.L. Gai, E.D. Boyes, In-situ environmental (scanning) transmission electron microscopy of catalysts at the atomic level. J. Phys: Conf. Ser. 522, 012002 (2014). https://doi.org/10.1088/1742-6596/522/1/012002

    Article  CAS  Google Scholar 

  39. D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7

    Article  CAS  Google Scholar 

  40. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011). https://doi.org/10.1021/cm102666r

    Article  CAS  Google Scholar 

  41. Q. Liu, Y. Liu, H. Li, L. Li, D. Deng, F. Yang, X. Bao, Towards the atomic-scale characterization of isolated iron sites confined in a nitrogen-doped graphene matrix. Appl. Surf. Sci. 410, 111–116 (2017). https://doi.org/10.1016/j.apsusc.2017.03.090

    Article  CAS  Google Scholar 

  42. R.J. Nicholls, A.T. Murdock, J. Tsang, J. Britton, T.J. Pennycook, A. Koos, P.D. Nellist, N. Grobert, J.R. Yates, Probing the bonding in nitrogen-doped graphene using electron energy loss spectroscopy. ACS Nano 7, 7145–7150 (2013). https://doi.org/10.1021/nn402489v

    Article  CAS  Google Scholar 

  43. Y. Qiao, P. Yuan, C.W. Pao, Y. Cheng, Z. Pu, Q. Xu, S. Mu, J. Zhang, Boron-rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range. Nano Energy 75, 104881 (2020). https://doi.org/10.1016/j.nanoen.2020.104881

    Article  CAS  Google Scholar 

  44. J. Han, H. Bao, J.Q. Wang, L. Zheng, S. Sun, Z.L. Wang, C. Sun, 3D N-doped ordered mesoporous carbon supported single-atom Fe–N–C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B 280, 119411 (2021). https://doi.org/10.1016/j.apcatb.2020.119411

    Article  CAS  Google Scholar 

  45. F. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng, Y. Li, Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 120, 2693–2758 (2020). https://doi.org/10.1021/acs.chemrev.9b00835

    Article  CAS  Google Scholar 

  46. M. Huang, S. Gong, C. Wang, Y. Yang, P. Jiang, P. Wang, L. Hu, Q. Chen, Lewis-basic EDTA as a highly active molecular electrocatalyst for CO2 reduction to CH4. Angew. Chem. Int. Ed. 60, 23002 (2021). https://doi.org/10.1002/anie.202110594

    Article  CAS  Google Scholar 

  47. Y. Liu, D. Tian, A.N. Biswas, Z. Xie, S. Hwang, J.H. Lee, H. Meng, J.G. Chen, Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59, 11345–11348 (2020). https://doi.org/10.1002/anie.202003625

    Article  CAS  Google Scholar 

  48. C. Jia, X. Tan, Y. Zhao, W. Ren, Y. Li, Z. Su, S.C. Smith, C. Zhao, Sulfur-dopant-promoted electroreduction of CO2 over coordinatively unsaturated Ni–N2 moieties. Angew. Chem. Int. Ed. 60, 23342 (2021). https://doi.org/10.1002/anie.202109373

    Article  CAS  Google Scholar 

  49. L. Liang, H. jin, H. Zhou, B. Liu, C. Hu, D. Chen, J. Zhu, Z. Wang, H.W. Li, S. Liu, D. He, S. Mu, Ultra-small platinum nanoparticles segregated by nickle sites for efficient ORR and HER processes. J. Energy Chem. 65, 48–54 (2022). https://doi.org/10.1016/j.jechem.2021.05.033

  50. Y. He, H. Guo, S. Hwang, X. Yang, Z. He, J. Braaten, S. Karakalos, W. Shan, M. Wang, H. Zhou, Z. Feng, K.L. More, G. Wang, D. Su, D.A. Cullen, L. Fei, S. Litster, G. Wu, Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 32, e2003577 (2020). https://doi.org/10.1002/adma.202003577

    Article  CAS  Google Scholar 

  51. J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu, D. Wang, S. Mu, H.Y. Yang, Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021). https://doi.org/10.1007/s40820-020-00579-y

    Article  CAS  Google Scholar 

  52. Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016). https://doi.org/10.1002/adma.201602912

    Article  CAS  Google Scholar 

  53. X. Li, X. Yang, J. Zhang, Y. Huang, B. Liu, In Situ/Operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019). https://doi.org/10.1021/acscatal.8b04937

    Article  CAS  Google Scholar 

  54. A.J. Jebaraj, D.A. Scherson, Microparticle electrodes and single particle microbatteries: electrochemical and in situ micro Raman spectroscopic studies. Acc. Chem. Res. 46, 1192–1205 (2013). https://doi.org/10.1021/ar300210q

    Article  CAS  Google Scholar 

  55. X. Xie, C. He, B. Li, Y. He, D.A. Cullen, E.C. Wegener, A.J. Kropf, U. Martinez, Y. Cheng, M.H. Engelhard, M.E. Bowden, M. Song, T. Lemmon, X.S. Li, Z. Nie, J. Liu, D.J. Myers, P. Zelenay, G. Wang, G. Wu, V. Ramani, Y. Shao, Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nat. Catal. 3, 1044–1054 (2020). https://doi.org/10.1038/s41929-020-00546-1

    Article  CAS  Google Scholar 

  56. G.Y. Qiao, D. Guan, S. Yuan, H. Rao, X. Chen, J.A. Wang, J.S. Qin, J.J. Xu, J. Yu, Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials. J. Am. Chem. Soc. 143, 14253–14260 (2021). https://doi.org/10.1021/jacs.1c05907

    Article  CAS  Google Scholar 

  57. J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1, e1500564 (2015). https://doi.org/10.1126/sciadv.1500564

    Article  CAS  Google Scholar 

  58. S. Wang, N. Yan, X-ray absorption spectroscopy: An indispensable tool to study single-atom catalysts. Synchrotron Radiat News 33, 18–26 (2020). https://doi.org/10.1080/08940886.2020.1812354

    Article  Google Scholar 

  59. X. Han, T. Zhang, W. Chen, B. Dong, G. Meng, L. Zheng, C. Yang, X. Sun, Z. Zhuang, D. Wang, A. Han, J. Liu, MnN4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 11, 2002753 (2020). https://doi.org/10.1002/aenm.202002753

    Article  CAS  Google Scholar 

  60. H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H.M. Chen, C.M. Li, T. Zhang, B. Liu, Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8

    Article  CAS  Google Scholar 

  61. Y. Xing, Z. Yao, W. Li, W. Wu, X. Lu, J. Tian, Z. Li, H. Hu, M. Wu, Fe/Fe3C boosts H2O2 utilization for methane conversion overwhelming O2 generation. Angew. Chem. Int. Ed. 60, 8889–8895 (2021). https://doi.org/10.1002/anie.202016888

    Article  CAS  Google Scholar 

  62. S. Song, J. Zhou, X. Su, Y. Wang, J. Li, L. Zhang, G. Xiao, C. Guan, R. Liu, S. Chen, H.J. Lin, S. Zhang, J.Q. Wang, Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 11, 2945–2953 (2018). https://doi.org/10.1039/c8ee00773j

    Article  CAS  Google Scholar 

  63. J. Wei, S.N. Qin, J. Yang, H.L. Ya, W.H. Huang, H. Zhang, B.J. Hwang, Z.Q. Tian, J.F. Li, Probing single-atom catalysts and catalytic reaction processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 60, 9306–9310 (2021). https://doi.org/10.1002/anie.202100198

    Article  CAS  Google Scholar 

  64. S. Chen, A. Chen, Electrochemical reduction of carbon dioxide on Au nanoparticles: An in situ FTIR study. J. Phys. Chem. C 123, 23898–23906 (2019). https://doi.org/10.1021/acs.jpcc.9b04080

    Article  CAS  Google Scholar 

  65. Y. Chen, H. Li, W. Zhao, W. Zhang, J. Li, W. Li, X. Zheng, W. Yan, W. Zhang, J. Zhu, R. Si, J. Zeng, Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nat. Commun. 10, 1885 (2019). https://doi.org/10.1038/s41467-019-09918-z

    Article  CAS  Google Scholar 

  66. S. Wu, J. Kaiser, X. Guo, L. Li, Y. Lu, M. Ballauff, Recoverable platinum nanocatalysts immobilized on magnetic spherical polyelectrolyte brushes. Ind. Eng. Chem. Res. 51, 5608–5614 (2012). https://doi.org/10.1021/ie2025147

    Article  CAS  Google Scholar 

  67. G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J.N. Zhang, Regulating Fe-spin state by atomically dispersed Mn–N in Fe–N–C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5

    Article  CAS  Google Scholar 

  68. R. Jalem, Y. Morishita, T. Okajima, H. Takeda, Y. Kondo, M. Nakayama, T. Kasuga, Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon. J. Mater. Chem. A 4, 14371–14379 (2016). https://doi.org/10.1039/c6ta04280e

    Article  CAS  Google Scholar 

  69. T.K. Schwietert, A. Vasileiadis, M. Wagemaker, First-principles prediction of the electrochemical stability and reaction mechanisms of solid-state electrolytes. JACS Au 1, 1488–1496 (2021). https://doi.org/10.1021/jacsau.1c00228

    Article  CAS  Google Scholar 

  70. M.R. Philpott, J.N. Glosli, Molecular dynamics simulation of interfacial electrochemical processes: Electric double layer screening. Solid-Liquid Electrochem Interfaces, 13–30

    Google Scholar 

  71. A. Kumar, V.K. Vashistha, D.K. Das, S. Ibraheem, G. Yasin, R. Iqbal, T.A. Nguyen, R.K. Gupta, M. Rasidul Islam, M–N–C-based single-atom catalysts for H2, O2 and CO2 electrocatalysis: Activity descriptors, active sites identification, challenges and prospects. Fuel 304, 121420 (2021). https://doi.org/10.1016/j.fuel.2021.121420

    Article  CAS  Google Scholar 

  72. C. Chu, D. Huang, S. Gupta, S. Weon, J. Niu, E. Stavitski, C. Muhich, J.H. Kim, Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nat. Commun. 12, 5179 (2021). https://doi.org/10.1038/s41467-021-25526-2

    Article  CAS  Google Scholar 

  73. J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen, S. Karakalos, M. Chen, D. Gu, K.L. More, G. Wang, Z. Feng, Z. Wang, G. Wu, Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019). https://doi.org/10.1002/anie.201909312

    Article  CAS  Google Scholar 

  74. J. Wang, H. Li, S. Liu, Y. Hu, J. Zhang, M. Xia, Y. Hou, J. Tse, J. Zhang, Y. Zhao, Turning on Zn 4s electrons in a N2–Zn–B2 configuration to stimulate remarkable ORR performance. Angew. Chem. Int. Ed. 60, 181–185 (2021). https://doi.org/10.1002/anie.202009991

    Article  CAS  Google Scholar 

  75. C.H. Choi, H.K. Lim, M.W. Chung, G. Chon, N. Ranjbar Sahraie, A. Altin, M.T. Sougrati, L. Stievano, H.S. Oh, E.S. Park, F. Luo, P. Strasser, G. Dražić, K.J.J. Mayrhofer, H. Kim, F. Jaouen, The achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy Environ. Sci. 11, 3176–3182 (2018). https://doi.org/10.1039/c8ee01855c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-An Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, M., Xue, D., Lu, BA. (2022). Characterization. In: Zhang, JN. (eds) Carbon-Based Nanomaterials for Energy Conversion and Storage. Springer Series in Materials Science, vol 325. Springer, Singapore. https://doi.org/10.1007/978-981-19-4625-7_3

Download citation

Publish with us

Policies and ethics