Skip to main content

GRE: A GAT-Based Relation Embedding Model of Knowledge Graph for Recommendation

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2021)

Abstract

Compared with collaborative filtering, knowledge graph embedding based recommender systems greatly boost the information retrieval accuracy and solve the limitations of data sparsity and cold start of traditional collaborative filtering. In order to fully explore the relationship and structure information hidden in knowledge graphs, we propose the GAT-based Relation Embedding (GRE) model. In our model, we propose a Triple Set to denote a set of knowledge graph triples whose head entities are linked by items in interaction records, and a Triple Group to denote a group of knowledge graph triples extracted from Triple Set according to different relations. The proposed GRE is a neural model that aims at enriching user preference representation in recommender systems by utilizing Graph Attention Network (GAT) to aggregate the embeddings of adjacent tail entities to head entity over Triple Group and embedding the representation of relation in the process of polymerization of Triple Groups in Triple Set. By embedding relation information into each Triple Group representation and concatenating Triple Group representations in Triple Set, this proposed novel relation embedding method addresses the problem that GAT-based models only consider aggregating the neighboring entities and ignore the effect of relations in triples. Through extensive experimental comparisons with the baselines, we show that GRE has gained state-of-the-art performance in the majority of the cases on two open-source datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bing Satori homepage. https://searchengineland.com/library/bing/bing-satori. Accessed 17 Feb 2020

  2. DBpedia homepage. https://wiki.dbpedia.org/. Accessed 17 Feb 2020

  3. Freebase homepage. http://www.freebase.be/. Accessed 17 Feb 2020

  4. Last.fm homepage. https://grouplens.org/datasets/hetrec-2011/. Accessed 17 Feb 2020

  5. MovieLens-1M homepage. https://grouplens.org/datasets/movielens/1m/. Accessed 4 Apr 2020

  6. Wikidata homepage. https://www.wikipedia.org/. Accessed 17 Feb 2020

  7. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowdsourcing linked data quality assessment, pp. 260–276 (2013). https://doi.org/10.1007/978-3-642-41338-4_17

  8. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, Nevada, United States, 5–8 December 2013, pp. 2787–2795 (2013). http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data

  9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016, pp. 3837–3845 (2016). http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering

  10. Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recommender systems. In: Linked Data Meets Artificial Intelligence, Papers from the 2010 AAAI Spring Symposium, Technical Report SS-10-07, Stanford, California, USA, 22–24 March 2010. AAAI (2010). http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1067

  11. Jin, X., et al.: Explicit state tracking with semi-supervision for neural dialogue generation, pp. 1403–1412 (2018). https://doi.org/10.1145/3269206.3271683

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015 (2015). http://arxiv.org/abs/1412.6980

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Conference Track Proceedings, Toulon, France, 24–26 April 2017. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl

  14. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. 42(8), 30–37 (2009)

    Article  Google Scholar 

  15. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: reasoning on knowledge graphs. In: Lang, J. (ed.) Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 5309–5313. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/743

  16. Lei, W., Jin, X., Kan, M., Ren, Z., He, X., Yin, D.: Sequicity: simplifying task-oriented dialogue systems with single sequence-to-sequence architectures, pp. 1437–1447 (2018). https://doi.org/10.18653/v1/P18-1133. https://www.aclweb.org/anthology/P18-1133/

  17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Bonet, B., Koenig, S. (eds.) Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 January 2015, pp. 2181–2187. AAAI Press (2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571

  18. Lops, P., Jannach, D., Musto, C., Bogers, T., Koolen, M.: Trends in content-based recommendation - preface to the special issue on recommender systems based on rich item descriptions. User Model. User Adapt. Interact. 29(2), 239–249 (2019). https://doi.org/10.1007/s11257-019-09231-w

    Article  Google Scholar 

  19. Niemann, K., Wolpers, M.: A new collaborative filtering approach for increasing the aggregate diversity of recommender systems. In: Dhillon, I.S., et al. (eds.) The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013, pp. 955–963. ACM (2013). https://doi.org/10.1145/2487575.2487656

  20. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. CoRR abs/1605.05273 (2016). http://arxiv.org/abs/1605.05273

  21. Noia, T.D., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Presutti, V., Pinto, H.S. (eds.) 8th International Conference on Semantic Systems, I-SEMANTICS 2012, Graz, Austria, 5–7 September 2012, pp. 1–8. ACM (2012). https://doi.org/10.1145/2362499.2362501

  22. Resnick, P., Varian, H.R.: Recommender systems - introduction to the special section. Commun. ACM 40(3), 56–58 (1997). https://doi.org/10.1145/245108.245121

    Article  Google Scholar 

  23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. CoRR abs/1710.10903 (2017). http://arxiv.org/abs/1710.10903

  24. Wang, H., et al: RippleNet: propagating user preferences on the knowledge graph for recommender systems. In: Cuzzocrea, A., et al. (eds.) Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, CIKM 2018, 22–26 October 2018, pp. 417–426. ACM (2018). https://doi.org/10.1145/3269206.3271739

  25. Wang, H., Zhang, F., Xie, X., Guo, M.: DKN: deep knowledge-aware network for news recommendation. In: Champin, P., Gandon, F.L., Lalmas, M., Ipeirotis, P.G. (eds.) Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, 23–27 April 2018, pp. 1835–1844. ACM (2018). https://doi.org/10.1145/3178876.3186175

  26. Wang, H., Zhang, F., Zhao, M., Li, W., Xie, X., Guo, M.: Multi-task feature learning for knowledge graph enhanced recommendation. CoRR abs/1901.08907 (2019). http://arxiv.org/abs/1901.08907

  27. Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: Liu, L., et al. (eds.) The World Wide Web Conference, WWW 2019, 13–17 May 2019, San Francisco, CA, USA, pp. 3307–3313. ACM (2019). https://doi.org/10.1145/3308558.3313417

  28. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.: KGAT: knowledge graph attention network for recommendation. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 950–958. ACM (2019). https://doi.org/10.1145/3292500.3330989

  29. Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.: Explainable reasoning over knowledge graphs for recommendation, pp. 5329–5336 (2019). https://doi.org/10.1609/aaai.v33i01.33015329

  30. Yu, X., et al.: Personalized entity recommendation: a heterogeneous information network approach. In: Carterette, B., Diaz, F., Castillo, C., Metzler, D. (eds.) 7th ACM International Conference on Web Search and Data Mining, WSDM 2014, New York, NY, USA, 24–28 February 2014, pp. 283–292. ACM (2014). https://doi.org/10.1145/2556195.2556259

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan of China (No. 2018YFB1003804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Shi, Y., Cheng, L., Zhang, K., Chen, Z. (2022). GRE: A GAT-Based Relation Embedding Model of Knowledge Graph for Recommendation. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2021. Communications in Computer and Information Science, vol 1492. Springer, Singapore. https://doi.org/10.1007/978-981-19-4549-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4549-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4548-9

  • Online ISBN: 978-981-19-4549-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics