Skip to main content

Locally Linear Embedding Discriminant Feature Learning Model

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1492))

  • 491 Accesses

Abstract

Feature learning is one of the important research trends among researchers in machine learning and other fields, which can select compact representations as feature information from high-dimensional data as well as multi-label data. Discriminative feature learning strengthens discrimination between sample features. Therefore, the feature information of samples can be better discriminated against in algorithms. In this paper, we propose a new unsupervised discriminative feature learning model called UD-LLE (Unsupervised Discriminative Locally Linear Embedding) by the improvement on standard Locally Linear Embedding, which not only maintains the manifold structure of mapping from high-dimensional space to low-dimensional space but also increases the discriminative of features. Specifically, we propose the restructure cost function as an objective function by adding constraint conditions about discrimination to standard function, which is solved by using stochastic gradient descent and momentum gradient descent algorithms combined with standard LLE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Wang, H., Zhang, Y., Zhang, J., Li, T., Peng, L.: A factor graph model for unsupervised feature selection. Inf. Sci. 480, 144–159 (2019)

    Article  MathSciNet  Google Scholar 

  3. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Article  Google Scholar 

  4. Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., Saeed, J.: A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends 1(2), 56–70 (2020)

    Article  Google Scholar 

  5. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  6. Yang, F., Yang, W., Gao, R., Liao, Q.: Discriminative multidimensional scaling for low-resolution face recognition. IEEE Signal Process. Lett. 25(3), 388–392 (2017)

    Article  Google Scholar 

  7. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  8. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  9. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. Departmental Papers (CIS), p. 12 (2003)

    Google Scholar 

  10. Lee, J.: Introduction to Topological Manifolds, vol. 202. Springer, Cham (2010). https://doi.org/10.1007/978-1-4419-7940-7

  11. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364 (2017)

  12. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)

  14. Zhang, S., Lei, Y.K.: Modified locally linear discriminant embedding for plant leaf recognition. Neurocomputing 74(14–15), 2284–2290 (2011)

    Article  Google Scholar 

  15. Huang, M., Zhu, Q., Wang, B., Lu, R.: Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification. Comput. Electron. Agric. 89, 175–181 (2012)

    Article  Google Scholar 

  16. Liang, D., Yang, J., Zheng, Z., Chang, Y.: A facial expression recognition system based on supervised locally linear embedding. Pattern Recogn. Lett. 26(15), 2374–2389 (2005)

    Article  Google Scholar 

  17. Luo, J., Xu, T., Pan, T., Sun, W.: An efficient method of hyperspectral image dimension reduction based on low rank representation and locally linear embedding. Integr. Ferroelectr. 208(1), 206–214 (2020)

    Article  Google Scholar 

  18. Yaddaden, Y., Adda, M., Bouzouane, A.: Facial expression recognition using locally linear embedding with LBP and HOG descriptors. In: 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH), pp. 221–226. IEEE (2021)

    Google Scholar 

  19. Zhang, Y., Yang, Y., Li, T., Fujita, H.: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE. Knowl.-Based Syst. 163, 776–786 (2019)

    Article  Google Scholar 

  20. Xie, Y., Jiang, D., Wang, X., Xu, R.: Robust transfer integrated locally kernel embedding for click-through rate prediction. Inf. Sci. 491, 190–203 (2019)

    Article  Google Scholar 

  21. Li, B., Zhang, Y.: Supervised locally linear embedding projection (SLLEP) for machinery fault diagnosis. Mech. Syst. Signal Process. 25(8), 3125–3134 (2011)

    Article  Google Scholar 

  22. Zhang, Y., Ye, D., Liu, Y.: Robust locally linear embedding algorithm for machinery fault diagnosis. Neurocomputing 273, 323–332 (2018)

    Article  Google Scholar 

  23. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003)

    Article  MathSciNet  Google Scholar 

  24. He, X., Sun, L., Lyu, C., Wang, X.: Quantum locally linear embedding for nonlinear dimensionality reduction. Quantum Inf. Process. 19(9), 1–21 (2020). https://doi.org/10.1007/s11128-020-02818-y

    Article  MathSciNet  Google Scholar 

  25. Zhang, Z., Wang, J.: MLLE: modified locally linear embedding using multiple weights. In: Advances in Neural Information Processing Systems, pp. 1593–1600. Citeseer (2007)

    Google Scholar 

  26. Ziegelmeier, L., Kirby, M., Peterson, C.: Sparse locally linear embedding. Procedia Comput. Sci. 108, 635–644 (2017)

    Article  Google Scholar 

  27. Wang, J., Wong, R.K., Lee, T.C.: Locally linear embedding with additive noise. Pattern Recogn. Lett. 123, 47–52 (2019)

    Article  Google Scholar 

  28. Chang, H., Yeung, D.Y.: Robust locally linear embedding. Pattern Recogn. 39(6), 1053–1065 (2006)

    Article  Google Scholar 

  29. Wen, G., Jiang, L., Wen, J.: Dynamically determining neighborhood parameter for locally linear embedding. J. Softw. 19(7), 1666–1673 (2008)

    Article  MathSciNet  Google Scholar 

  30. Zhang, S.Q.: Enhanced supervised locally linear embedding. Pattern Recogn. Lett. 30(13), 1208–1218 (2009)

    Article  Google Scholar 

  31. Hettiarachchi, R., Peters, J.F.: Multi-manifold LLE learning in pattern recognition. Pattern Recogn. 48(9), 2947–2960 (2015)

    Article  Google Scholar 

  32. Liu, Y., Hu, Z., Zhang, Y.: Bearing feature extraction using multi-structure locally linear embedding. Neurocomputing 428, 280–290 (2021)

    Article  Google Scholar 

  33. Deng, P., Wang, H., Li, T., Horng, S.J., Zhu, X.: Linear discriminant analysis guided by unsupervised ensemble learning. Inf. Sci. 480, 211–221 (2019)

    Article  MathSciNet  Google Scholar 

  34. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  35. Chu, R., Wang, H., Yang, Y., Li, T.: Clustering ensemble based on density peaks. Acta Automatica Sinica 42(9), 1401–1412 (2016)

    Google Scholar 

  36. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  37. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61806170), the Humanities and Social Sciences Fund of Ministry of Education (No. 18XJC72040001), and the National Key Research and Development Program of China (No. 2019YFB1706104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Wang, L., Wang, H., Peng, B., Li, T. (2022). Locally Linear Embedding Discriminant Feature Learning Model. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2021. Communications in Computer and Information Science, vol 1492. Springer, Singapore. https://doi.org/10.1007/978-981-19-4549-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4549-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4548-9

  • Online ISBN: 978-981-19-4549-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics