Skip to main content

Organic–Inorganic NanoHybrids in Tissue Engineering and Drug Delivery Applications

  • Chapter
  • First Online:
Hybrid Nanomaterials

Abstract

Organic–inorganic nanohybrids epitomize a wide-range of nano-scaled synthetic materials that comprise of both organic and inorganic constituents allied together through covalent and non-covalent linkages, having applications in various fields such as tissue engineering, biomedicine, catalysis and optoelectronics. This far-reaching nanotechnology has been the prompt emergent in terms of innovative hybrid nanomaterials. The distinct arrangement of nanohybrid materials has accumulated a plentiful amazing aspect that offered pronounced opportunities for the improvement of materials stability, versatility, biocompatibility, eco-friendliness and other physical and mechanical properties. The emergence of nanotechnologies has filled a wide array of new-fangled keys with the assurance to improve existing cures of various diseases. In tissue engineering, numerous factors considerably affect the cellular response on a functional cell-scaffold construct like material's chemistry, porosity of the material, interconnectivity, mechanical properties, cell seeding density and several exogenous growth elements. Characteristics of scaffold that are associated with their mechanical and chemical properties are taken vital. Organic–inorganic nanohybrid along with the above stated mechanical, chemical, and biological material properties have arisen as a novel category of materials in tissue engineering. The selective delivery of drugs is one of the features that bound the efficacy for treating various diseases. Furthermore, in some cases, the administration of multiple drugs is necessary to overcome resistances, as in the case of cancers or tuberculosis. Combination treatments depend upon the management of one or more drugs along with the unconstrained action mechanism that aimed to increase the efficacy of the treatment. For an ideal situation, application of such treatments needs the delivery of the precise combination of drugs to a particular cellular target. In this framework, usage of organic–inorganic nanohybrid particles as platforms for the co-delivery of various drugs is measured as a vastly promising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44:6161–6186

    Google Scholar 

  2. Nguyen KT, Zhao Y (2015) Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc Chem Res 48:3016–3025

    Google Scholar 

  3. Guo K, Zhao X, Dai X, Zhao N, Xu FJ (2019) Organic/inorganic nanohybrids as multifunctional gene delivery systems. J Gene Med 21

    Google Scholar 

  4. Shakeel A et al (2022) Advanced polymeric/inorganic nanohybrids: an integrated platform for gas sensing applications. Chemosphere 133772

    Google Scholar 

  5. Ruiz‐Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323–336

    Google Scholar 

  6. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic−inorganic nanocomposites. J Mater Chem 15:3559–3592

    Google Scholar 

  7. Chen G, Roy I, Yang C, Prasad PN (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116:2826–2885

    Google Scholar 

  8. Ma X, Zhao Y, Liang XJ (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44:1114–1122

    Google Scholar 

  9. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    Google Scholar 

  10. Ryu JH, Lee S, Son S, Kim SH, Leary JF, Choi K, Kwon IC (2014) Theranostic nanoparticles for future personalized medicine. J Control Release 190:477–484

    Google Scholar 

  11. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394

    Google Scholar 

  12. Samanta S, Pradhan L, Bahadur D (2018) Mesoporous lipid-silica nanohybrids for folate-targeted drug-resistant ovarian cancer. New J Chem 42:2804–2814

    Article  CAS  Google Scholar 

  13. Manatunga DC, Godakanda VU, de Silva RM, de Silva KN (2019) Recent developments in the use of organic–inorganic nanohybrids for drug delivery. WIREs Nanomed Nanobiotechnol 12

    Google Scholar 

  14. Pippa N, Chronopoulos DD, Stellas D, Fernández-Pacheco R, Arenal R, Costas Demetzos NT (2017) Design and development of multi-walled carbon nanotube-liposome drug delivery platforms. Int J Pharm 528:429–439

    Article  CAS  Google Scholar 

  15. Zhang X, Zhao Y, Cao L, Sun L (2018) Fabrication of degradable lemon-like porous silica nanospheres for pH/redox-responsive drug release. Sens Actuators B Chem 257:105–115

    Article  CAS  Google Scholar 

  16. Gonzalez-Rodriguez R, Campbell E, Naumov A (2019) Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/ fluorescence imaging and cancer sensing. PLoS ONE 14:1–18

    Article  Google Scholar 

  17. Liu S et al (2021) Engineered nanocellulose-based hydrogels for smart drug delivery applications. Int J Biol Macromol 181:275–290

    Article  CAS  Google Scholar 

  18. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  Google Scholar 

  19. Qamar SA et al (2022) Carrageenan-based hybrids with biopolymers and nano-structured materials for biomimetic applications. Starch—Stärke 2200018

    Google Scholar 

  20. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431

    Google Scholar 

  21. Liu JN, Bu W, Shi J (2017) Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev 117:6160–6224

    Google Scholar 

  22. Dai Y, Xu C, Sun X, Chen X (2017) Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumor microenvironment. Chem Soc Rev 46:3830–3852

    Google Scholar 

  23. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Google Scholar 

  24. Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ (2018) Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev 3:1666–1762

    Google Scholar 

  25. Liu H, Li X, Wang S, Huang S, Wei C, Lv J (2014) Fabrication and thermal property of polyhedral oligomeric silsesquioxane (POSS)/microcrystalline cellulose (MCC) hybrids. J Carbohyd Chem 33:86–103

    Google Scholar 

  26. Kaur L, Singh J, Liu Q (2007) Starch—a potential biomaterial for biomedical applications. Nanomaterials and nanosystems for biomedical applications, pp 83–98

    Google Scholar 

  27. Reyes-Peces MV, Pérez-Moreno A, María de-los-Santos D, del Mar Mesa-Díaz M, Pinaglia-Tobaruela G, Vilches-Pérez JI, Fernández-Montesinos R, Salido M, de la Rosa-Fox N, Piñero M (2020) Chitosan-GPTMS-silica hybrid mesoporous aerogels for bone tissue engineering. Polymers 12:2723

    Google Scholar 

  28. Gull N, Khan SM, Khalid S, Zia S, Islam A, Sabir A, Sultan M, Hussain F, Khan RU, Butt MT (2020) Designing of biocompatible and biodegradable chitosan based crosslinked hydrogel for in vitro release of encapsulated povidone-iodine: a clinical translation. Int J Biol Macromol 164:4370–4380

    Google Scholar 

  29. Abo Elsoud MM, El Kady EM (2019) Current trends in fungal biosynthesis of chitin and chitosan. Bull Natl Res Centre 43:59

    Google Scholar 

  30. Gull N, Khan SM, Butt MT, Zia S, Khalid S, Islam A, Sajid I, Khan RU, King MW (2019) Hybrid cross‐linked hydrogels as a technology platform for in vitro release of cephradine. Polym Adv Technol 30:2414–2424

    Google Scholar 

  31. Götz W, Tobiasch E, Witzleben S, Schulze M (2019) Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics 11:117

    Google Scholar 

  32. Gull N, Khan SM, Butt OM, Islam A, Shah A, Jabeen S, Khan SU, Khan A, Khan RU, Butt MT (2020) Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol 162:175–187

    Google Scholar 

  33. Gull N, Khan SM, Butt MT, Khalid S, Shafiq M, Islam A, Asim S, Hafeez S, Khan RU (2019) In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study. RSC Adv 9:31078–31091

    Google Scholar 

  34. Datta LP, Manchineella S, Govindaraju T (2019) Biomolecules-derived Biomaterials. Biomaterials 230:119633

    Google Scholar 

  35. Gull N, Khan SM, Islam A, Butt MTZ (2019) Hydrogels used for biomedical applications. In: Visakh PM, Bayraktar O, Menon G (eds) Bio monomers for green polymeric composites materials, pp 175–199

    Google Scholar 

  36. Pison U, Welte T, Giersig M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533:341–350

    Google Scholar 

  37. Hsu JC, Huang CC, Ou KL, Lu N, Mai FD, Chen JK, Chang JY (2011) Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: multifunctional agents for dual-modality imaging and drug delivery. J Mater Chem 21:19257–19266

    Google Scholar 

  38. Wu Y, Zhang Y, Ju J, Yan H, Huang X, Tan Y (2019) Advances in halloysite nanotubes–polysaccharide nanocomposite preparation and applications. Polymers 11:987

    Google Scholar 

  39. Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F (2015) Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci 50:1435–1445

    Google Scholar 

  40. Fakhrullin RF, Lvov YM (2016) Halloysite clay nanotubes for tissue engineering. Nanomedicine 11:2243–2246

    Google Scholar 

  41. Vikulina A, Voronin D, Fakhrullin R, Vinokurov V, Volodkin D (2020) Naturally derived nano- and micro-drug delivery vehicles halloysite, vaterite and nanocellulose. Royal Soc Chem 44

    Google Scholar 

  42. Ozkan M (2004) Quantum dots and other nanoparticles: what can they offer to drug discovery? Res Focus 9:1065–1071

    CAS  Google Scholar 

  43. Judeinstein P, Sanchez C (1996) Hybrid organic−inorganic materials: a land of multidisciplinarity. J Mater Chem 6:511–525

    Google Scholar 

  44. Luchini A, Vitiello G (2019) Understanding the nano-bio interfaces: lipid-coatings for inorganic nanoparticles as promising strategy for biomedical applications. Front Chem 7:343

    Article  CAS  Google Scholar 

  45. Li X, Iocozzia J, Chen Y, Zhao S, Cui X, Wang W, Yu H, Lin S, Lin Z (2018) From precision synthesis of block copolymers to properties and applications of nanoparticles. Angew Chem Int Ed 57:2046–2070

    Google Scholar 

  46. Huang X, Hu J, Li Y, Xin F, Qiao R, Davis TP (2019) Engineering organic/inorganic nanohybrids through RAFT polymerization for biomedical applications. Biomacromolecules 20:4243–4257

    Google Scholar 

  47. Xu FJ (2018) Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: from strategic design to nucleic acid delivery applications. Prog Polym Sci 78:56–91

    Google Scholar 

  48. Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJVersatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev 119:1666–1762

    Google Scholar 

  49. Barakat N, Abadir M, Sheikh F, Kanjwal M, Park S, Kim H (2010) Polymeric nanofibres containing solid nanoparticles prepared by electrospinning and their applications. Chem Eng J 156:487–495

    Google Scholar 

  50. Cao M, Zhao W, Wang L, Li R, Gong H, Zhang Y, Xu H, Lu J (2018) Graphene oxide-assisted accumulation and layer-by-layer assembly of antibacterial peptide for sustained release applications. ACS Appl Mater Interfaces 10:24937–24946

    Google Scholar 

  51. Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomas H, Zhu M, Shi X (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibres for tissue engineering applications. Carbohyd Polym 91:419–427

    Google Scholar 

  52. Wang S, Wang C, Zhang B, Sun Z, Li Z, Jiang X, Bai X (2010) Preparation of Fe3O4/PVA nanofibres via combining in situ composite with electrospinning. Mater Lett 64:9–11

    Google Scholar 

  53. Avsar G, Agirbasli D, Agirbasli MA, Gunduz O, Oner ET (2018) Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohyd Polym 193:316–325

    Google Scholar 

  54. Song T, Zhang YZ, Zhou TJ (2006) Fabrication of magnetic composite nanofibres of poly(epsilon-caprolactone) with FePt nanoparticles by coaxial electrospinning. J Magn Magn Mater 303:E286–E289

    Google Scholar 

  55. Huang W, Xiao Y, Shi X (2019) Construction of electrospun organic/inorganic hybrid nanofibres for drug delivery and tissue engineering applications. Adv Fiber Mater 1:32-45

    Google Scholar 

  56. Campbell K, Craig DQM, McNally T (2008) Poly(ethylene glycol) layered silicate nanocomposites for retarded drug release prepared by hot-melt extrusion. Int J Pharm 363:126–131

    Article  CAS  Google Scholar 

  57. Zhang Y, Tang A, Yang H, Ouyang J (2015) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8–17

    Article  Google Scholar 

  58. Carvalho SM, Leonel AG, Mansur AAP, Carvalho IC, Krambrock K, Mansur HS (2019) Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomater Sci 7:2102–2122

    Article  CAS  Google Scholar 

  59. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK (2016) Carbon dots embedded magnetic nanoparticles @ chitosan @ metal organic framework as a nanoprobes for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces 8:16573–16583

    Article  CAS  Google Scholar 

  60. Vannozzi L, Gouveia P, Pingue P, Canale C, Ricotti L (2020) Novel ultrathin films based on a blend of PEG-b-PCL and PLLA and doped with ZnO nanoparticles. ACS Appl Mater Interfaces 12:21398–21410

    Google Scholar 

  61. Ng JY, Obuobi S, Chua ML, Zhang C, Hong S, Kumar Y, Gokhale R, Ee PL (2020) Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine—a review. Carbohyd Polym 241

    Google Scholar 

  62. Shrestha BK, Shrestha S, Tiwari AP, Kim JI, Ko SW, Kim HJ, Park CH, Kim CS (2017) Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibres for bone tissue engineering. Mater Des 133:69–81

    Google Scholar 

  63. Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63

    Google Scholar 

  64. Govindarajan D, Duraipandy N, Srivatsan KV, Lakra R, Korapatti PS, Jayavel R, Kiran MS (2017) Fabrication of hybrid collagen aerogels reinforced with wheat grass bioactives as instructive scaffolds for collagen turnover and angiogenesis for wound healing applications. ACS Appl Mater Interfaces 9:16939–16950

    Article  CAS  Google Scholar 

  65. Reyes-Peces MV, Pérez-Moreno A, de-Los-Santos DM, Mesa-Díaz MD, Pinaglia-Tobaruela G, Vilches-Pérez JI, Fernández-Montesinos R, Salido M, de la Rosa-Fox N, Piñero M (2020) Chitosan-GPTMS-silica hybrid mesoporous aerogels for bone tissue engineering. Polymers 12

    Google Scholar 

  66. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Google Scholar 

  67. Mobini S, Solati-Hashjin M, Peirovi H, Osman NA, Gholipourmalekabadi M, Barati M, Samadikuchaksaraei A (2013) Bioactivity and biocompatibility studies on silk-based scaffold for bone tissue engineering. J Med Biol Eng 33:207–213

    Google Scholar 

  68. Vepari C, Kaplan DL (2009) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Google Scholar 

  69. Hadisi Z, Nourmohammadi J, Mohammadi J (2015) Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceram Int 41:10745–10754

    Google Scholar 

  70. Gaihre B, Jayasuriya AC (2016) Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 69:733–743

    Google Scholar 

  71. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11:820–826

    Google Scholar 

  72. Dzamukova MR, Naumenko EA, Rozhina EV, Trifonov AA, Fakhrullin RF (2015) Cell surface engineering with polyelectrolyte-stabilised magnetic nanoparticles: a facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Res 8:2515–2532

    Google Scholar 

  73. Wei W, Minullina R, Abdullayev E, Fakhrullin R, Mills D, Lvov Y (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv 4:488–494

    Google Scholar 

  74. Shamsi MH, Geckeler KE (2008) The first biopolymer-wrapped noncarbon nanotubes. Nanotechnology 19:075604

    Google Scholar 

  75. Olugebefola SC, Hamilton AR, Fairfield DJ, Sottos NR, White SR (2013) Structural reinforcement of microvascular networks using electrostatic layer-by-layer assembly with halloysite nanotubes. Soft Matter 10:544–548

    Google Scholar 

  76. Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089

    Google Scholar 

  77. He H, Yuan D, Wu Y, Cao Y (2019) Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics 11:1–22

    Article  Google Scholar 

  78. Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70

    Article  Google Scholar 

  79. Rothermich NO, Thomas MH, Phillips VK, Bergen W (1981) Clinical trial of penicillamine in rheumatoid arthritis. Arthritis Rheum 24:1473–1478

    Article  CAS  Google Scholar 

  80. Mao Y et al (2021) Insight of nanomedicine strategies for a targeted delivery of nanotherapeutic cues to cope with the resistant types of cancer stem cells. J Drug Deliv Sci Technol 64:102681

    Article  CAS  Google Scholar 

  81. Chandra Mohanta S, Saha A, Sujatha Devi P (2018) PEGylated Iron oxide nanoparticles for pH responsive drug delivery application. Mater Today: Proc 5:9715–9725

    CAS  Google Scholar 

  82. Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16:69–78

    Article  CAS  Google Scholar 

  83. Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M (2018) Mesoporous silica nanoparticles for drug delivery: current insights. Molecules 23:1–19

    Google Scholar 

  84. Zhou Y, Quan G, Wu Q, Zhang X, Niu B (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharmaceutica Sinica B 8:165–177

    Article  Google Scholar 

  85. Kaassis AYA, Wei M, Williams GR (2016) New biocompatible hydroxy double salts and their drug delivery properties. J Mater Chem B 4:5789–5793

    Article  CAS  Google Scholar 

  86. Alavi M, Karimi N, Safaei M (2017) Application of various types of liposomes in drug delivery systems. Adv Pharm Bull 7:3–9

    Article  CAS  Google Scholar 

  87. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33:1689–1698

    Article  CAS  Google Scholar 

  88. Huang D, Wu D (2018) Biodegradable dendrimers for drug delivery. Mater Sci Eng C 90:713–727

    Article  CAS  Google Scholar 

  89. Corma A, Díaz U, Arrica M, Fernández E, Ortega Í (2009) Organic-inorganic nanospheres with responsive molecular gates for drug storage and release. Ang Chem-Int Ed 48:6247–6250

    Article  CAS  Google Scholar 

  90. Wilpiszewska K, Antosik AK, Spychaj T (2015) Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films. Carbohyd Polym 128:82–89

    Article  CAS  Google Scholar 

  91. Kong Y, Ge H, Xiong J, Zuo S, Wei Y, Yao C, Deng L (2014) Applied clay science palygorskite polypyrrole nanocomposite: a new platform for electrically tunable drug delivery. Appl Clay Sci 99:119–124

    Article  CAS  Google Scholar 

  92. Zhang Y, Long M, Huang P, Yang H, Chang S, Hu Y (2016) Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Res 3:1–11

    Google Scholar 

  93. Rajkumar S, Kevadiya BD, Bajaj HC (2015) Spheres as reservoirs of antidepressant drugs. Asian J Pharm Sci 10:452–458

    Article  Google Scholar 

  94. Panahi Y, Gharekhani A, Hamishehkar H, Zakeri-milani P, Gharekhani H (2019) Stomach-specific drug delivery of clarithromycin using a semi interpenetrating polymeric network hydrogel made of montmorillonite and chitosan: synthesis, characterization and in vitro drug release study. Adv Pharm Bull 9:159–173

    Article  CAS  Google Scholar 

  95. Joshi GV, Kevadiya BD, Mody HM, Bajaj HC (2012) Confinement and controlled release of quinine on chitosan-montmorillonite bionanocomposites. J Polym Sci Part A: Polym Chem 50:423–430

    Article  CAS  Google Scholar 

  96. Jain S, Datta M (2015) Oral extended release of dexamethasone: montmorillonite-PLGA nanocomposites as a delivery vehicle. Appl Clay Sci 104:182–188

    Article  CAS  Google Scholar 

  97. Mahkam M, Rafi AA, Gheshlaghi LM (2014) Preparation of novel pH-sensitive nanocomposites based on ionic-liquid modified montmorillonite for colon specific drug delivery system. Polym Compos 37:182–187

    Article  Google Scholar 

  98. Zheng JP, Luan L, Wang HY, Xi LF, Yao KD (2007) Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci 36:297–301

    Article  CAS  Google Scholar 

  99. Bello ML, Junior AM, Vieira BA, Dias LRS, De VP (2015) Sodium Montmorillonite/Amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material. PLoS ONE 10:1–20

    Article  Google Scholar 

  100. Wang Q, Zhang J, Zheng Y, Wang A (2014) Adsorption and release of ofloxacin from acid- and heat-treated halloysite. Colloids Surf B: Biointerfaces 113:51–58

    Article  CAS  Google Scholar 

  101. García-guzmán P, Medina-torres L, Calderas F, Bernad-bernad MJ, Gracia-mora J (2019) Rheological mucoadhesion and cytotoxicity of montmorillonite clay mineral / hybrid microparticles biocomposite. Appl Clay Sci 180:105–202

    Article  Google Scholar 

  102. Jesus CRN, Molina EF, Pulcinelli SH, Santilli CV (2018) Highly controlled diffusion drug release from ureasil-poly(ethylene oxide)-Na+-montmorillonite hybrid hydrogel nanocomposites. ACS Appl Mater Interfaces 10:19059–19068

    Article  CAS  Google Scholar 

  103. Ilhan-AyisigE, Yesil-Celiktas O (2018) Silica-based organic-inorganic hybrid nanoparticles and nanoconjugates for improved anticancer drug delivery. Eng Life Sci 18:882–892

    Google Scholar 

  104. Luo W, Xu X, Zhou B, He P, Li Y, Liu C (2019) Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery. Mater Sci Eng C 100:855–861

    Google Scholar 

  105. Thi TTH, Tran DHN, Bach LG, Quang HV, Nguyen DC, Park KD, Nguyen DH (2019) Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics 11:1–13

    Google Scholar 

  106. Le TTH, Bui TQ, Ha TMT, Le MH, Pham HN, Ha PT (2018) Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy. J Mater Sci 53:13826–13842

    Article  CAS  Google Scholar 

  107. Sawant VJ, Bamane SR (2017) PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells journal of drug delivery science and technology PEG-beta-cyclodextrin functionalized. J Drug Deliv Sci Technol 43:397–408

    Article  Google Scholar 

  108. Manatunga DC, de Silva RM, de Silva KMN, Wijeratne DT, Malavige GN, Williams G (2018) Fabrication of 6-gingerol, doxorubicin and alginate hydroxyapatite into a bio-compatible formulation: enhanced anti-proliferative effect on breast and liver cancer cells. Chem Cent J 12:1–13

    Article  Google Scholar 

  109. Padmanabhan VP, Kulandaivelu R, Nellaiappan SNTS (2018) New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications. Mater Sci Eng C 92:685–693

    Article  CAS  Google Scholar 

  110. Kurczewska J, Cegłowski M, Messyasz B, Schroeder G (2018) Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Appl Clay Sci 153:134–143

    Article  CAS  Google Scholar 

  111. Maryo LS, Haghnazari N, Keshavarzi F, Zhaleh H, Seidi F (2018) Synthesis of poly (amidoamine) (PAMAM) dendrimer-based chitosan for targeted drug delivery and cell therapy. J Basic Res Med Sci 5:6–13

    Article  Google Scholar 

  112. Kesharwani P, Choudhury H, Meher JG, Pandey M, Gorain B (2019) Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog Mater Sci 103:484–508

    Article  CAS  Google Scholar 

  113. Yesil-Celiktas O, Pala C, Cetin-Uyanikgil EO, Sevimli-Gur C (2017) Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in neuro blastoma cells. Anal Biochem 519:1–7

    Article  CAS  Google Scholar 

  114. Hanafy NAN, El-Kemary M, Leporatti S (2018) Micelles structure development as a strategy to improve smart cancer therapy. Cancer 10:1–14

    Google Scholar 

  115. Sun Y, Wang Q, Chen J, Liu L, Ding L, Shen M, Li J, Han B, Duan Y (2017) Temperature-sensitive gold nanoparticle-coated pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy. Theranostics 7:4424–4444

    Google Scholar 

  116. Bakewell SJ, Carie A, Costich TL, Sethuraman J, Semple JE, Sullivan B, Martinez GV, Dominguez-Viqueira W, Sill KN (2017) Imaging the delivery of drug-loaded, iron-stabilized micelles. Nanomedicine: Nanotechnol Biol Med 13:1353–1362

    Google Scholar 

  117. Su Y, Zhao L, Meng F, Wang Q, Yao Y, Luo J (2017) Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles. Colloids Surf B: Biointerfaces 152:238–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Maqsood Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S.M., Zia, S., Gull, N. (2022). Organic–Inorganic NanoHybrids in Tissue Engineering and Drug Delivery Applications. In: Rizwan, K., Bilal, M., Rasheed, T., Nguyen, T.A. (eds) Hybrid Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4538-0_7

Download citation

Publish with us

Policies and ethics