Skip to main content

Organic–Inorganic Nanohybrids in Cancer Treatment

  • Chapter
  • First Online:
Hybrid Nanomaterials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Nanohybrids more specifically organic–inorganic nanohybrids are providing a vast range of functionalities for diagnostics, drug delivery, and treatment of deadly disease that brought them to light for the attention of every vigilant scientist. Huge efforts have been resulted for their use in different ways, while scientists are still striving to make them a best source for the treatment of cancer. This piece of work not only emphasizes the nanohybrids but also their different types, their qualities, their preparation, mechanism of action toward cancer, their recent development for the treatment of cancer. However, it has been concluded that more challenges are there in way of organic–inorganic nanohybrid for the treatment of cancer which can be removed by introducing different approach for their use as cancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. CA Cancer J Clin 69(1):734

    Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Google Scholar 

  3. Jain A, Gautam L, Vishwakarma N, Sharma R, Mody N, Dubey S, Vyas SP (2018) Emergence of polymer-lipid hybrid systems in healthcare scenario. In: Multifunctional nanocarriers for contemporary healthcare applications. IGI Global, USA, p 448470

    Google Scholar 

  4. Riley RS, June CH, Langer R, Mitchell MJ (2019) Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18(3):175–196

    Article  CAS  Google Scholar 

  5. Jain A, Mahira S, Majoral J-P, Bryszewska M, Khan W, Ionov M (2019) Dendrimer mediated targeting of siRNA against polo-like kinase for the treatment of triple negative breast cancer. J Biomed Mater Res Part A 107(9):19331944

    Article  Google Scholar 

  6. Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ (2019) Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 4(6):398–414

    Article  Google Scholar 

  7. Kalia VC, Patel SK, Cho BK, Wood TK, Lee JK (2021) Emerging applications of bacteria as antitumor agents. In: Seminars in cancer biology. Academic Press, Cambridge

    Google Scholar 

  8. Massari F, Rizzo A, Mollica V, Rosellini M, Marchetti A, Ardizzoni A, Santoni M (2021) Immune-based combinations for the treatment of metastatic renal cell carcinoma: a meta-analysis of randomised clinical trials. Eur J Cancer 154:120–127

    Article  CAS  Google Scholar 

  9. Christofi T, Baritaki S, Falzone L, Libra M, Zaravinos A (2019) Current perspectives in cancer immunotherapy. Cancers 11(10):1472

    Article  CAS  Google Scholar 

  10. Dong Y, Siegwart DJ, Anderson DG (2019) Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev 144:133–147

    Article  CAS  Google Scholar 

  11. Chen G, Qian Y, Zhang H, Ullah A, He X, Zhou Z, Shen J (2021) Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Appl Mater Today 23:101003

    Google Scholar 

  12. Gautam L, Jain A, Shrivastava P, Vyas S, Vyas SP (2021) Emergence of novel targeting systems and conventional therapies for effective cancer treatment. In: Nano drug delivery strategies for the treatment of cancers. Academic Press, Cambridge, pp 1–35

    Google Scholar 

  13. Hameed S, Mo S, Mustafa G, Bajwa SZ, Khan WS, Dai Z (2020) Immunological consequences of nanoparticle-mediated antitumor photoimmunotherapy. Adv Ther 3(5):1900101

    Article  CAS  Google Scholar 

  14. Liu J-Y, Deng J-Y, Zhang N-N, Liu H-F, Sun W-L, He W-T et al (2019) Clinical significance of skip lymph-node metastasis in pN1 gastric-cancer patients after curative surgery. Gastroenterol Rep 7(3):193198

    Google Scholar 

  15. Liu Y, Chen X-G, Yang PP, Qiao Z-Y, Wang H (2019) Tumor microenvironmental pH and enzyme dual responsive polymer-liposomes for synergistic treatment of cancer immuno-chemotherapy. Biomacromolecules 20(2):882892

    Google Scholar 

  16. Majumdar APN (2019) Preclinical animal tumor models to study prevention of colon cancer recurrence by curcumin. In: Animal models in cancer drug discovery. Elsevier, Amsterdam, p 293307

    Google Scholar 

  17. Marra G, Valerio M, Emberton M, Heidenreich A, Crook JM, Bossi A, Pisters LL (2019) Salvage local treatments after focal therapy for prostate cancer. Eur Urol Oncol 2(5):526538

    Google Scholar 

  18. McDonnell NA, Funk RK, Foote RL, Kalra S, Neben-Wittich MA (2019) Treatment of tracheobronchial amyloidosis with external beam radiation therapy. Int J Radiat Oncol Biol Phys 104(1):238

    Article  Google Scholar 

  19. Arbain NH, Basri M, Salim N, Wui WT, Rahman MBA (2018) Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment. Mater Today Proc 5:S137S142

    Google Scholar 

  20. Rout SR, Gowtham K, Sheikh A, Parvez S, Dandela R, Kesharwani P (2022) Recent advances and future prospective of hybrid drug delivery systems. In: Hybrid nanomaterials for drug delivery. Woodhead Publishing, UK, pp 357–374

    Google Scholar 

  21. Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X (2021) Cascade drug-release strategy for enhanced anticancer therapy. Matter 4(1):26–53

    Article  Google Scholar 

  22. Ajdary M, Moosavi M, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma R (2018) Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials 8:634

    Article  Google Scholar 

  23. Yang G, Phua SZF, Bindra AK, Zhao Y (2019) Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater 31(10):1805730

    Article  Google Scholar 

  24. Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P (2021) Hybrid nanosystems for biomedical applications. ACS Nano 15(2):2099–2142

    Article  CAS  Google Scholar 

  25. Ding Y, Li Z, Jaklenec A, Hu Q (2021) Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 179:113914

    Article  CAS  Google Scholar 

  26. Zeng Y, Xiang Y, Sheng R, Tomás H, Rodrigues J, Gu Z et al (2021) Polysaccharide-based nanomedicines for cancer immunotherapy: a review. Bioact Mater 6(10):3358–3382

    Google Scholar 

  27. Zhang YN, Lazarovits J, Poon W, Ouyang B, Nguyen LN, Kingston BR, Chan WC (2019) Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett 19(10):7226–7235

    Article  CAS  Google Scholar 

  28. Shimizu K, Iyoda T, Okada M, Yamasaki S, Fujii SI (2018) Immune suppression and reversal of the suppressive tumor microenvironment. Int Immunol 30(10):445–455

    Article  CAS  Google Scholar 

  29. Hao M, Chen B, Zhao X, Zhao N, Xu FJ (2020) Organic/inorganic nanocomposites for cancer immunotherapy. Mater Chem Front 4(9):2571–2609

    Article  CAS  Google Scholar 

  30. Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17(12):887–904

    Article  CAS  Google Scholar 

  31. Gu Z, Liu T, Tang J, Yang Y, Song H, Tuong ZK et al (2019) Mechanism of iron oxide-induced macrophage activation: the impact of composition and the underlying signaling pathway. J Am Chem Soc 141(15):6122–6126

    Google Scholar 

  32. Liu X, Yan B, Li Y, Ma X, Jiao W, Shi K et al (2020) Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy. ACS Nano 14(2):1936–1950

    Google Scholar 

  33. He L, Nie T, Xia X, Liu T, Huang Y, Wang X, Chen T (2019) Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv Func Mater 29(30):1901240

    Article  Google Scholar 

  34. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40(4):310–327

    Article  CAS  Google Scholar 

  35. Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š et al (2020) Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: a road from failure to success in clinical applications. J Controlled Release 328:59–77

    Google Scholar 

  36. Wang X, Zhong X, Li J, Liu Z, Cheng L (2021) Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 50(15):8669–8742

    Article  CAS  Google Scholar 

  37. Kargozar S, Mozafari M (2018) Nanotechnology and nanomedicine: start small, think big. Mater Today Proc 5(7):15492–15500

    Article  CAS  Google Scholar 

  38. Choi G, Rejinold NS, Piao H, Choy JH (2021) Inorganic–inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 12(14):5044–5063

    Article  CAS  Google Scholar 

  39. Martinelli C, Pucci C, Ciofani G (2019) Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng 3(1):011502

    Article  Google Scholar 

  40. Dong Y, Chen Y, Zhu D, Shi K, Ma C, Zhang W et al (2020) Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J Controlled Release 322:416–425

    Google Scholar 

  41. Cucchiarini M, Madry H (2019) Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 15(1):18–29

    Article  Google Scholar 

  42. Nikolaeva OY, Liubota RV, Zotov OS, Vereshchako RI (2021) Cancer immunotherapy: current opportunities and perspectives. Pract Oncol 4(2):25–38

    Article  Google Scholar 

  43. Mi Y, Hagan CT IV, Vincent BG, Wang AZ (2019) Emerging nano-/microapproaches for cancer immunotherapy. Adv Sci 6(6):1801847

    Article  Google Scholar 

  44. Yu G, Zhu B, Shao L, Zhou J, Saha ML, Shi B et al (2019) Host–guest complexation-mediated codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proc Nat Acad Sci 116(14):6618–6623

    Google Scholar 

  45. Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F (2021) Supramolecular cancer nanotheranostics. Chem Soc Rev 50(4):2839–2891

    Article  CAS  Google Scholar 

  46. Conejos-Sánchez I, Đorđević S, Medel M, Vicent MJ (2021) Polypeptides as building blocks for image-guided nanotherapies. Curr Opin Biomedi Eng 20:100323

    Article  Google Scholar 

  47. Yang C, Mi X, Su H, Yang J, Gu Y, Zhang L et al (2019) GE11-PDA-Pt@ USPIOs nano-formulation for relief of tumor hypoxia and MRI/PAI-guided tumor radio-chemotherapy. Biomater Sci 7(5):2076–2090

    Google Scholar 

  48. Wang A, Li J, Dong Q, Wang S, Jian H, Wang M et al (2019) Preparation of microgels with ultrahigh payload of various hydrophilic and hydrophobic inorganic nanoparticle composites up to 92 wt%. ACS Appl Mater Interfaces 11(4):4408–4415

    Google Scholar 

  49. Chen J, Zhu Y, Wu C, Shi J (2020) Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 49(24):9057–9094

    Article  CAS  Google Scholar 

  50. Saveleva MS, Eftekhari K, Abalymov A, Douglas TE, Volodkin D, Parakhonskiy BV, Skirtach AG (2019) Hierarchy of hybrid materials—the place of inorganics-in-organics in it, their composition and applications. Front Chem 7:179

    Article  CAS  Google Scholar 

  51. Juthani R, Madajewski B, Yoo B, Zhang L, Chen PM, Chen F et al (2020) Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clin Cancer Res 26(1):147–158

    Google Scholar 

  52. Zakery M, Ensafi AA, Kazemifard N, Rezaei B (2020) Novel histamine fluorosensor based on modified environmental friendly carbon nanoparticles from gum tragacanth. IEEE Sens J 20(22):13229–13235

    Article  CAS  Google Scholar 

  53. Gardinier TC, Kohle FF, Peerless JS, Ma K, Turker MZ, Hinckley JA et al (2019) High-performance chromatographic characterization of surface chemical heterogeneities of fluorescent organic–inorganic hybrid core–shell silica nanoparticles. ACS Nano 13(2):1795–1804

    Google Scholar 

  54. Li Z, Hu J, Yang L, Zhang X, Liu X, Wang Z, Li Y (2020) Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. Nanoscale 12(21):11395–11415

    Article  CAS  Google Scholar 

  55. Halicka K, Cabaj J (2021) Electrospun nanofibers for sensing and biosensing applications—a review. Int J Mol Sci 22(12):6357

    Article  CAS  Google Scholar 

  56. Yu H, Zhu T, Xie J, Du J, Sun C, Wang J et al (2019) Preparation of inorganic‐organic‐framework nanoscale carries as a potential platform for drug delivery. Adv Eng Mater 21(2):1800626

    Google Scholar 

  57. Wu J, Xi J, Chen H, Li S, Zhang L, Li P, Wu W (2022) Flexible 2D nanocellulose-based SERS substrate for pesticide residue detection. Carbohyd Polym 277:118890

    Article  CAS  Google Scholar 

  58. Liang X, Liu Y, Wen K, Jiang W, Li Q (2021) Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications. J Mater Chem B 9(37):7597–7607

    Article  CAS  Google Scholar 

  59. Tang Q, Zhang L, Tan X, Jiao L, Wei Q, Li H (2019) Bioinspired synthesis of organic–inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay. Biosens Bioelectron 133:94–99

    Article  CAS  Google Scholar 

  60. Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q et al (2020) Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 230:119619

    Google Scholar 

  61. Liu J, Huang J, Zhang L, Lei J (2021) Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev 50(2):1188–1218

    Article  CAS  Google Scholar 

  62. Huang X, Hu J, Li Y, Xin F, Qiao R, Davis TP (2019) Engineering organic/inorganic nanohybrids through RAFT polymerization for biomedical applications. Biomacromolecules 20(12):4243–4257

    Google Scholar 

  63. Ma C, Malessa A, Boersma AJ, Liu K, Herrmann A (2020) Supercharged proteins and polypeptides. Adv Mater 32(20):1905309

    Article  CAS  Google Scholar 

  64. Cheng X, Xu HD, Ran HH, Liang G, Wu FG (2021) Glutathione-depleting nanomedicines for synergistic cancer therapy. ACS Nano 15(5):8039–8068

    Article  CAS  Google Scholar 

  65. Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D et al (2018) Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev 3:1666–1762

    Google Scholar 

  66. Panahi Y, Gharekhani A, Hamishehkar H, Zakeri-milani P, Gharekhani H (2019) Stomach-specific drug delivery of clarithromycin using a semi interpenetrating polymeric network hydrogel made of montmorillonite and chitosan: synthesis, characterization and in vitro drug release study. Adv Pharmeceutical Bull 9(1):159–173

    Article  CAS  Google Scholar 

  67. Li H, Zhang Z, Godakanda VU, Chiu Y, Angkawinitwong U, Patel K et al (2019) The effect of collection substrate on electrospun ciprofloxacin-loaded poly (vinylpyrrolidone) and ethyl cellulose nanofibers as potential wound dressing materials. Mater Sci Eng C 104:109917

    Google Scholar 

  68. Godakanda VU, Li H, Alquezar L, Zhao L, Zhu L, de Silva R et al (2019) Tunable drug release from blend poly(vinyl pyrrolidone)-ethyl cellulose nanofibers. Int J Pharm 562:172–179

    Google Scholar 

  69. García-Guzmán P, Medina-Torres L, Calderas F, Bernad-Bernad MJ, Gracia-Mora J, Mena B, Manero O (2018) Characterization of hybrid microparticles/montmorillonite composite with raspberry-like morphology for atorvastatin controlled release. Colloids Surf B 167:397–406

    Google Scholar 

  70. Silva JM, Barud HS, Meneguin AB, Constantino VRL, Ribeiro SJL (2019) Inorganic-organic bio-nanocomposite films based on laponite and cellulose nanofibers (CNF). Appl Clay Sci 168:428–435

    Google Scholar 

  71. Wang H, Wu J, Zheng L, Cheng X (2018) Preparation and properties of ZnAl layered double hydroxide/polycaprolactone nanocomposites for use in drug delivery. Polym Plast Technol Eng 1–9

    Google Scholar 

  72. Senapati S, Shukla R, Tripathi YB, Mahanta AK, Rana D, Maiti P (2018) Engineered cellular uptake and controlled drug delivery using two dimensional nanoparticle and polymer for cancer treatment. Mol Pharm 15(2):679–694

    Article  CAS  Google Scholar 

  73. Mahanta AK, Senapati S, Paliwal P, Krishnamurthy S, Hemalatha S, Maiti P (2019) Nanoparticle-induced controlled drug delivery using chitosan-based hydrogel and scaffold: application to bone regeneration. Mol Pharm 16(1):327–338

    Article  CAS  Google Scholar 

  74. Yazdani P, Mansouri E, Eyvazi S, Yousefi V, Kahroba H, Hejazi MS et al (2019) Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artifi Cells Nanomed Biotechnol 47(1):436–442

    Google Scholar 

  75. Simon J, Flahaut E, Golzio M (2019) Overview of carbon nanotubes for biomedical applications. Materials 12(4):1–21

    Article  Google Scholar 

  76. Karthika V, Kaleeswarran P, Gopinath K, Arumugam A, Govindarajan M, Alharbi NS et al (2018) Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Mater Sci Eng C 90:589–601

    Google Scholar 

  77. Zhang N, Yan F, Liang X, Wu M, Shen Y, Chen M et al (2018) Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinsons disease therapy. Theranostics 8(8):2264–2277

    Google Scholar 

  78. Hameed S, Bhattarai P, Dai Z (2018) Cerasomes and bicelles: hybrid bilayered nanostructures with silica-like surface in cancer theranostics. Front Chem 6:1–17

    Google Scholar 

  79. Gileva A, Sarychev G, Kondrya U, Mironova M, Sapach A, Selina O et al (2019) Lipoamino acid-based cerasomes for doxorubicin delivery: preparation and in vitro evaluation. Mater Sci Eng C 100:724–734

    Google Scholar 

  80. Bagheri AR, Li C, Zhang X, Zhou X, Aramesh N, Zhou H, Jia J (2021) Recent advances in covalent organic frameworks for cancer diagnosis and therapy. Biomater Sci 9:5745–5761

    Google Scholar 

  81. Huang D, Wu D (2018) Biodegradable dendrimers for drug delivery. Mater Sci Eng C 90:713–727

    Google Scholar 

  82. Kesharwani P, Choudhury H, Meher JG, Pandey M, Gorain B (2019) Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog Mater Sci 103:484–508

    Article  CAS  Google Scholar 

  83. Maryo LS, Haghnazari N, Keshavarzi F, Zhaleh H, Seidi F (2018) Synthesis of poly (amidoamine) (PAMAM) dendrimer-based chitosan for targeted drug delivery and cell therapy. J Basic Res Med Sci 5(4):6–13

    Article  Google Scholar 

  84. Kurczewska J, Cegłowski M, Messyasz B, Schroeder G (2018) Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Appl Clay Sci 153:134–143

    Google Scholar 

  85. Alibolandi M, Hoseini F, Mohammadi M, Ramezani P, Einafshar E, Taghdisi SM et al (2018) Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int J Pharm 549(1–2):67–75

    Google Scholar 

  86. Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19(7):1979

    Article  Google Scholar 

  87. Wang L, Pei J, Cong Z, Zou Y, Sun T, Davitt F et al (2019) Development of anisamide-targeted PEGylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice. Int J Nanomed 14:1817

    Google Scholar 

  88. Mehmandoust M, Erk N, Karaman C, Karimi F, Salmanpour S (2021) Sensitive and selective electrochemical detection of epirubicin as anticancer drug based on nickel ferrite decorated with gold nanoparticles. Micromachines 12(11):1334

    Article  Google Scholar 

  89. Kutsevol N, Harahuts Yu, Shton I, Borikun T, Storchai D, Lukianova N, Chekhun V (2018) In vitro study of toxicity of hybrid gold-polymer composites. Mol Cryst Liq Cryst 671(1):1–8

    Article  CAS  Google Scholar 

  90. Kutsevol N, Kuziv Y, Bezugla T, Chumachenko V, Chekhun V (2020) Multicomponent nanocomposites for complex anti-cancer therapy: effect of aggregation processes on their efficacy. Int J Polym Sci 2020(Article ID 9627954):7

    Google Scholar 

  91. Mahalunkar S, Yadav AS, Gorain M, Pawar V, Braathen R, Weiss S et al (2019) Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int J Nanomed 14:8285

    Google Scholar 

  92. Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K (2019) Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced bloodbrain barrier penetration. Sci Rep 9(1):8278

    Article  Google Scholar 

  93. Manatunga DC, Godakanda VU, de Silva RM, de Silva KN (2020) Recent developments in the use of organic–inorganic nanohybrids for drug delivery. Wiley Interdisc Rev Nanomed Nanobiotechnol 12(3):e1605

    Article  Google Scholar 

  94. Ilhan-Ayisigi E, Yesil-Celiktas O (2018) Silica-based organic-inorganic hybrid nanoparticles and nanoconjugates for improved anticancer drug delivery. Eng Life Sci 18(12):882–892

    Article  CAS  Google Scholar 

  95. Yuan X, Peng S, Lin W, Wang J, Zhang L (2019) Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. J Colloid Interface Sci 555:82–93

    Article  CAS  Google Scholar 

  96. Samanta S, Pradhan L, Bahadur D (2018) Mesoporous lipid-silica nanohybrids for folate-targeted drug-resistant ovarian cancer. New J Chem 42(4):2804–2814

    Article  CAS  Google Scholar 

  97. Zhao S, Sun S, Jiang K, Wang Y, Liu Y, Wu S, Li Z (2019) In situ synthesis of fluorescent mesoporous silica—carbon dot nanohybrids featuring folate receptor—overexpressing cancer cell targeting and drug delivery. Nano-Micro Lett 0123456789:1–32

    Google Scholar 

  98. Fang J, Zhang S, Xue X, Zhu X, Zhu S, Song S et al (2018) Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomed 13:5113–5126

    Google Scholar 

  99. Liu JF, Jang B, Issadore D, Tsourkas A (2019) Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdisc Rev Nanomed Nanobiotechnol 11:e1571

    Article  Google Scholar 

  100. Satpathy M, Wang L, Zielinski RJ, Qian W, Wang YA, Mohs AM et al (2019) Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles. Theranostics 9(3):778–795

    Google Scholar 

  101. Vallabani NVS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8(6):1–23

    Google Scholar 

  102. Shukla RK, Kumar A, Kansara K, Dhawan A, Patel P, Pandya A, Shanker R (2018) Corrigendum: synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle. Int J Nanomed 13:4207–4208

    Article  Google Scholar 

  103. Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16(1):69–78

    Article  CAS  Google Scholar 

  104. Carvalho SM, Leonel AG, Mansur AAP, Carvalho IC, Krambrock K, Mansur HS (2019) Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomater Sci 7(5):2102–2122

    Article  CAS  Google Scholar 

  105. Lerra L, Farfalla A, Sanz B, Cirillo G, Vittorio O, Voli F et al (2019) Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells. Pharmaceutics 11(1):1–17

    Google Scholar 

  106. Sadhukhan P, Kundu M, Rana S, Kumar R, Das J (2019) Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol Rep 6:176–185

    Google Scholar 

  107. Kundu M, Sadhukhan P, Ghosh N, Chatterjee S, Manna P, Das J, Sil PC (2019) pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res 18:161–172

    Article  CAS  Google Scholar 

  108. Zamani M, Rostami M, Aghajanzadeh M, Kheiri Manjili H, Rostamizadeh K, Danafar H (2018) Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J Mater Sci 53(3):1634–1645

    Article  CAS  Google Scholar 

  109. Zhang X, Liang X, Ma X, Hou R, Li X, Wang F (2019) Highly stable near-infrared dye conjugated cerasomes for fluorescence imagingguided synergistic chemo-photothermal therapy of colorectal cancer. Biomater Sci 7(7):2873–2888

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komal Rizwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amjad, H., Rizwan, K., Baber, M., Iqbal, S. (2022). Organic–Inorganic Nanohybrids in Cancer Treatment. In: Rizwan, K., Bilal, M., Rasheed, T., Nguyen, T.A. (eds) Hybrid Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4538-0_6

Download citation

Publish with us

Policies and ethics