Skip to main content

Organic–Inorganic Nanohybrids in Medicine

  • Chapter
  • First Online:
Hybrid Nanomaterials

Abstract

A great deal of interest has been drawn to organic and inorganic nanohybrids because of their advantageous properties and potential uses in the healthcare industry, among others. A significant amount of time and effort was expended on the design and fabrication of adaptable nanohybrids. This research discusses organic and inorganic nanohybrids formed from nanoparticles and polymeric substances as the subject of this research, which discusses their design, characteristics, and biomedical applications. Following that, we will talk about how nanohybrids work and what they are capable of, including things like self-assembling nanohybrids and those made from organic and inorganic components. On the following page, you will find examples of nanohybrids in use for ultrasound as well as medicine and imaging-guided therapy. The promise of sustainably grown nanohybrids, with their limitations and recommended research opportunities, are discussed in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albanese A et al (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  Google Scholar 

  2. Bagheri A et al (2016) Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Adv Sci 3(7):1500437

    Article  Google Scholar 

  3. Barth BM et al (2011) Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 5(7):5325–5337

    Article  CAS  Google Scholar 

  4. Basuki JS et al (2013) Grafting of P (OEGA) onto magnetic nanoparticles using Cu (0) mediated polymerization: comparing grafting “from” and “to” approaches in the search for the optimal material design of nanoparticle MRI contrast agents. Macromolecules 46(15):6038–6047

    Google Scholar 

  5. Basuki JS et al (2014) A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents. Polym Chem 5(7):2611–2620

    Article  CAS  Google Scholar 

  6. Betzer O et al (2017) In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano 11(11):10883–10893

    Article  CAS  Google Scholar 

  7. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764

    Article  CAS  Google Scholar 

  8. Boyer C et al (2016) Copper-mediated living radical polymerization (atom transfer radical polymerization and copper (0) mediated polymerization): from fundamentals to bioapplications. Chem Rev 116(4):1803–1949

    Article  CAS  Google Scholar 

  9. Boyer C et al (2010) Anti-fouling magnetic nanoparticles for siRNA delivery. J Mater Chem 20(2):255–265

    Article  CAS  Google Scholar 

  10. Bruchez Jr M et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Google Scholar 

  11. Brust M et al (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun (7):801–802

    Google Scholar 

  12. Burda C et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  13. Chauhan VP et al (2011) Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem 123(48):11619–11622

    Article  Google Scholar 

  14. Chen D et al (2014) Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv Func Mater 24(42):6621–6628

    Article  CAS  Google Scholar 

  15. Chen G et al (2017) Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging. Adv Func Mater 27(8):1604671

    Article  Google Scholar 

  16. Chen G et al (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116(5):2826–2885

    Article  CAS  Google Scholar 

  17. Chen L et al (2017) One-pot synthesis of MoS2 nanoflakes with desirable degradability for photothermal cancer therapy. ACS Appl Mater Interfaces 9(20):17347–17358

    Article  CAS  Google Scholar 

  18. Chen X et al (2018) Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano 12(6):5646–5656

    Article  CAS  Google Scholar 

  19. Cheng L et al (2014) PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 26(12):1886–1893

    Article  CAS  Google Scholar 

  20. Cheng Y et al (2018) Deep-level defect enhanced photothermal performance of bismuth sulfide–gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew Chem Int Ed 57(1):246–251

    Article  CAS  Google Scholar 

  21. Chithrani BD et al (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  Google Scholar 

  22. Dai Y et al (2017) Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 46(12):3830–3852

    Article  CAS  Google Scholar 

  23. Daniels TR et al (2006) The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121(2):144–158

    Article  CAS  Google Scholar 

  24. del Mar Encabo-Berzosa M et al (2017) The effect of PEGylated hollow gold nanoparticles on stem cell migration: potential application in tissue regeneration. Nanoscale 9(28):9848–9858

    Article  Google Scholar 

  25. Deng L et al (2016) Hybrid iron oxide–graphene oxide–polysaccharides microcapsule: a micro-matryoshka for on-demand drug release and antitumor therapy in vivo. ACS Appl Mater Interfaces 8(11):6859–6868

    Article  CAS  Google Scholar 

  26. Deng X et al (2017) A hollow-structured CuS@ Cu2S@ Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Adv Mater 29(36):1701266

    Article  Google Scholar 

  27. Dunn AE et al (2014) Spatial and temporal control of drug release through pH and alternating magnetic field induced breakage of Schiff base bonds. Polym Chem 5(10):3311–3315

    Article  CAS  Google Scholar 

  28. Duong HT et al (2014) Functional gold nanoparticles for the storage and controlled release of nitric oxide: applications in biofilm dispersal and intracellular delivery. J Mater Chem B 2(31):5003–5011

    Article  CAS  Google Scholar 

  29. Edmondson S et al (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22

    Article  CAS  Google Scholar 

  30. Elacqua E et al (2017) Molecular recognition in the colloidal world. Acc Chem Res 50(11):2756–2766

    Article  CAS  Google Scholar 

  31. Fan W et al (2016) On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv Mater 28(21):3987–4011

    Article  CAS  Google Scholar 

  32. Fan W et al (2017) Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117(22):13566–13638

    Article  CAS  Google Scholar 

  33. Feng Q et al (2016) Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater 38:129–142

    Article  CAS  Google Scholar 

  34. Feng T et al (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4):4410–4420

    Article  CAS  Google Scholar 

  35. Feng W et al (2015) Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci Rep 5(1):1–13

    Article  CAS  Google Scholar 

  36. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241(105):20–22

    Article  CAS  Google Scholar 

  37. Gai S et al (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389

    Article  CAS  Google Scholar 

  38. Gallo J et al (2013) Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 42(19):7816–7833

    Article  CAS  Google Scholar 

  39. Gao F et al (2017) Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent. Adv Func Mater 27(24):1700605

    Article  Google Scholar 

  40. Gao X et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  Google Scholar 

  41. Ge S et al (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113(31):13593–13599

    Article  CAS  Google Scholar 

  42. Geng Y et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255

    Article  CAS  Google Scholar 

  43. Georgakilas V et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    Article  CAS  Google Scholar 

  44. Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046):1214–1217

    Article  CAS  Google Scholar 

  45. Gong L et al (2017) Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J Mater Chem B 5(10):1873–1895

    Article  CAS  Google Scholar 

  46. Goodwill PW et al (2012) X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24(28):3870–3877

    Article  CAS  Google Scholar 

  47. Guan M et al (2015) Multifunctional upconversion–nanoparticles–trismethylpyridylporphyrin–fullerene nanocomposite: a near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy. NPG Asia Mater 7(7):e205–e205

    Article  CAS  Google Scholar 

  48. Guo R et al (2016) Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small 12(33):4541–4552

    Article  CAS  Google Scholar 

  49. Guo R et al (2018) A yolk–shell nanoplatform for gene-silencing-enhanced photolytic ablation of cancer. Adv Func Mater 28(14):1706398

    Article  Google Scholar 

  50. Guo R et al (2010) Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26(8):5428–5434

    Article  CAS  Google Scholar 

  51. Guo W et al (2016) Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene–poly (3, 4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10(5):5086–5095

    Article  CAS  Google Scholar 

  52. Han X et al (2018) Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano 12(5):4545–4555

    Article  CAS  Google Scholar 

  53. He X et al (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80(24):9597–9603

    Article  CAS  Google Scholar 

  54. Herr JK et al (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924

    Article  CAS  Google Scholar 

  55. Hervault A et al (2016) Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8(24):12152–12161

    Article  CAS  Google Scholar 

  56. Hinde E et al (2017) Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat Nanotechnol 12(1):81–89

    Article  CAS  Google Scholar 

  57. Hong G et al (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1):1–22

    Article  Google Scholar 

  58. Hou C-H et al (2009) The fabrication and characterization of dicalcium phosphate dihydrate-modified magnetic nanoparticles and their performance in hyperthermia processes in vitro. Biomaterials 30(27):4700–4707

    Article  CAS  Google Scholar 

  59. Hu F et al (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18(19):2553–2556

    Article  CAS  Google Scholar 

  60. Hu H et al (2017) Synthesis of Janus Au@ periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale 9(14):4826–4834

    Article  CAS  Google Scholar 

  61. Hu Y et al (2017) A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer. Adv Mater 29(33):1700448

    Article  Google Scholar 

  62. Hu Y et al (2018) Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 47(5):1874–1900

    Article  CAS  Google Scholar 

  63. Hu Y et al (2017) Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. J Control Release 255:154–163

    Article  CAS  Google Scholar 

  64. Huang P et al (2012) Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater 24(37):5104–5110

    Article  CAS  Google Scholar 

  65. Huang X et al (2012) Synthesis of hetero-polymer functionalized nanocarriers by combining surface-initiated ATRP and RAFT polymerization. Small 8(23):3579–3583

    Article  CAS  Google Scholar 

  66. Huang X et al (2016) NaYF4: Yb/Er@ PPy core–shell nanoplates: an imaging-guided multimodal platform for photothermal therapy of cancers. Nanoscale 8(2):1040–1048

    Article  CAS  Google Scholar 

  67. Huang X et al (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5(7):5390–5399

    Article  CAS  Google Scholar 

  68. Huang X et al (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448

    Article  CAS  Google Scholar 

  69. Huang X et al (2013) Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 34(7):1772–1780

    Article  CAS  Google Scholar 

  70. Hwang AA et al (2015) pH-responsive isoniazid-loaded nanoparticles markedly improve tuberculosis treatment in mice. Small 11(38):5066–5078

    Article  CAS  Google Scholar 

  71. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun (8):927–934

    Google Scholar 

  72. Hyeon T et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Article  CAS  Google Scholar 

  73. Jain RK (2012) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 64:353–365

    Article  Google Scholar 

  74. Jang H et al (2014) Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au–Ag nanoshell and its application for chemo-thermotherapy. ACS Nano 8(1):467–475

    Article  CAS  Google Scholar 

  75. Jatupaiboon N et al (2015) A facile microemulsion template route for producing hollow silica nanospheres as imaging agents and drug nanocarriers. J Mater Chem B 3(16):3130–3133

    Article  CAS  Google Scholar 

  76. Jeong S et al (2017) Cancer-microenvironment-sensitive activatable quantum dot probe in the second near-infrared window. Nano Lett 17(3):1378–1386

    Article  CAS  Google Scholar 

  77. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932

    Article  CAS  Google Scholar 

  78. Jing L et al (2016) Aqueous based semiconductor nanocrystals. Chem Rev 116(18):10623–10730

    Article  CAS  Google Scholar 

  79. Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44(10):1050–1060

    Article  CAS  Google Scholar 

  80. Kempen PJ et al (2015) Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 5(6):631

    Article  CAS  Google Scholar 

  81. Kim B et al (2010) Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 5(6):465–472

    Article  CAS  Google Scholar 

  82. Kim BH et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631

    Article  CAS  Google Scholar 

  83. Kim D et al (2010) A drug-loaded aptamer–gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696

    Article  CAS  Google Scholar 

  84. Kim D et al (2009) Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 131(2):454–455

    Article  CAS  Google Scholar 

  85. Kim J et al (2016) Single-layered MoS2–PEI–PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small 12(9):1184–1192

    Article  CAS  Google Scholar 

  86. Kucheryavy P et al (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29(2):710–716

    Article  CAS  Google Scholar 

  87. Lee D-E et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672

    Article  CAS  Google Scholar 

  88. Lee N et al (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115(19):10637–10689

    Article  CAS  Google Scholar 

  89. Lei M et al (2017) Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging. Adv Func Mater 27(30):1700978

    Article  Google Scholar 

  90. Li C et al (2014) Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv Func Mater 24(12):1772–1780

    Article  CAS  Google Scholar 

  91. Li C et al (2015) Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo. ACS Nano 9(12):12096–12103

    Article  CAS  Google Scholar 

  92. Li D et al (2018) Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mater 30(13):1705913

    Article  Google Scholar 

  93. Li L et al (2013) Generalized approach to the synthesis of reversible concentric and eccentric polymer-coated nanostructures. Small 9(6):825–830

    Article  CAS  Google Scholar 

  94. Li Y et al (2018) Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy. J Am Chem Soc 140(11):4164–4171

    Article  CAS  Google Scholar 

  95. Li Y et al (2015) Core–shell upconversion nanoparticle@ metal–organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv Mater 27(27):4075–4080

    Article  CAS  Google Scholar 

  96. Liang C et al (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 26(32):5646–5652

    Article  CAS  Google Scholar 

  97. Lim E-K et al (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394

    Article  CAS  Google Scholar 

  98. Lin H et al (2017) Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett 17(1):384–391

    Article  CAS  Google Scholar 

  99. Lin Y et al (2011) Water-soluble chitosan-quantum dot hybrid nanospheres toward bioimaging and biolabeling. ACS Appl Mater Interfaces 3(4):995–1002

    Article  CAS  Google Scholar 

  100. Ling D et al (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285

    Article  CAS  Google Scholar 

  101. Liu B et al (2015) Poly (acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Adv Func Mater 25(29):4717–4729

    Article  CAS  Google Scholar 

  102. Liu C et al (2014) Are rare-earth nanoparticles suitable for in vivo applications? Adv Mater 26(40):6922–6932

    Article  CAS  Google Scholar 

  103. Liu H et al (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24(6):755–761

    Article  CAS  Google Scholar 

  104. Liu J et al (2018) A new co-P nanocomposite with ultrahigh relaxivity for in vivo magnetic resonance imaging-guided tumor eradication by chemo/photothermal synergistic therapy. Small 14(7):1702431

    Article  Google Scholar 

  105. Liu J et al (2017) Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small 13(9):1602567

    Article  Google Scholar 

  106. Liu J et al (2016) Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 83:51–65

    Article  CAS  Google Scholar 

  107. Liu J et al (2015) Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Func Mater 25(3):384–392

    Article  CAS  Google Scholar 

  108. Liu X et al (2016) Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Adv Func Mater 26(2):267–276

    Article  CAS  Google Scholar 

  109. Liu Y et al (2018) Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew Chem Int Ed 57(6):1510–1513

    Article  CAS  Google Scholar 

  110. Liu Z et al (2013) Long-circulating Gd2O3: Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials 34(6):1712–1721

    Google Scholar 

  111. Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195

    Article  CAS  Google Scholar 

  112. Low PS et al (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129

    Article  CAS  Google Scholar 

  113. Lu F et al (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413

    Article  CAS  Google Scholar 

  114. Lundqvist M et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270

    Article  CAS  Google Scholar 

  115. Luo Z et al (2014) Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 35(27):7951–7962

    Article  CAS  Google Scholar 

  116. Lutz J-F et al (2006) One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7(11):3132–3138

    Google Scholar 

  117. Ma X et al (2015) Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces 7(20):10671–10676

    Article  CAS  Google Scholar 

  118. Ma X et al (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44(10):1114–1122

    Article  CAS  Google Scholar 

  119. Maeda H et al (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  CAS  Google Scholar 

  120. Mangadlao JD et al (2018) Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 12(4):3714–3725

    Article  CAS  Google Scholar 

  121. Meng H et al (2011) Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5(6):4434–4447

    Article  CAS  Google Scholar 

  122. Mi P et al (2015) Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano 9(6):5913–5921

    Article  CAS  Google Scholar 

  123. Min KH et al (2012) The tumor accumulation and therapeutic efficacy of doxorubicin carried in calcium phosphate-reinforced polymer nanoparticles. Biomaterials 33(23):5788–5797

    Article  CAS  Google Scholar 

  124. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109(2):259–302

    Article  CAS  Google Scholar 

  125. Mooney E et al (2012) The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 33(26):6132–6139

    Article  CAS  Google Scholar 

  126. Nam J et al (2013) Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev 65(5):622–648

    Article  CAS  Google Scholar 

  127. Nasr SH et al (2018) Detection of β-amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer’s disease. Small 14(3):1701828

    Article  Google Scholar 

  128. Nguyen KT, Zhao Y (2015) Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc Chem Res 48(12):3016–3025

    Article  CAS  Google Scholar 

  129. Nguyen T-K et al (2015) Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep 5(1):1–15

    Article  Google Scholar 

  130. Niikura K et al (2013) Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7(5):3926–3938

    Article  CAS  Google Scholar 

  131. Niu Y et al (2013) Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater 25(43):6233–6237

    Article  CAS  Google Scholar 

  132. Nomoto T et al (2016) Calcium phosphate-based organic–inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy. Biomater Sci 4(5):826–838

    Article  CAS  Google Scholar 

  133. Palanikumar L et al (2015) Noncovalent polymer-gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform. Adv Func Mater 25(6):957–965

    Article  CAS  Google Scholar 

  134. Patel S et al (2015) Inducing stem cell myogenesis using nanoscript. ACS Nano 9(7):6909–6917

    Article  CAS  Google Scholar 

  135. Prencipe G et al (2009) PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131(13):4783–4787

    Article  CAS  Google Scholar 

  136. Qi G et al (2010) Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem Mater 22(9):2693–2695

    Article  CAS  Google Scholar 

  137. Qiao H et al (2017) Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive plumbagin release. ACS Nano 11(7):7259–7273

    Article  CAS  Google Scholar 

  138. Qiu J et al (2005) Preparation and characterization of porous ultrafine Fe2O3 particles. Mater Res Bull 40(11):1968–1975

    Article  CAS  Google Scholar 

  139. Rampersaud S et al (2016) The effect of cage shape on nanoparticle-based drug carriers: anticancer drug release and efficacy via receptor blockade using dextran-coated iron oxide nanocages. Nano Lett 16(12):7357–7363

    Article  CAS  Google Scholar 

  140. Reddy LH et al (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  CAS  Google Scholar 

  141. Ruiz-Hitzky E et al (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22(3):323–336

    Article  CAS  Google Scholar 

  142. Sanchez C et al (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592

    Article  CAS  Google Scholar 

  143. Sapsford KE et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074

    Article  CAS  Google Scholar 

  144. Sarigiannis Y et al (2016) Synthesis and evaluation of condensed magnetic nanocrystal clusters with in vivo multispectral optoacoustic tomography for tumour targeting. Biomaterials 91:128–139

    Article  CAS  Google Scholar 

  145. Schick I et al (2014) Multifunctional two-photon active silica-coated Au@ MnO Janus particles for selective dual functionalization and imaging. J Am Chem Soc 136(6):2473–2483

    Article  CAS  Google Scholar 

  146. Seidi F et al (2018) Designing smart polymer conjugates for controlled release of payloads. Chem Rev 118(7):3965–4036

    Article  CAS  Google Scholar 

  147. Shakeel A et al (2022) Advanced polymeric/inorganic nanohybrids: an integrated platform for gas sensing applications. Chemosphere 133772

    Google Scholar 

  148. Shao D et al (2016) Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials 100:118–133

    Article  CAS  Google Scholar 

  149. Shen Z et al (2017) Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11(11):10992–11004

    Article  CAS  Google Scholar 

  150. Shim MS, Kwon YJ (2012) Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 64(11):1046–1059

    Article  CAS  Google Scholar 

  151. Smith AM et al (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240

    Article  CAS  Google Scholar 

  152. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986

    Article  CAS  Google Scholar 

  153. Song G et al (2018) Janus iron oxides@ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett 18(1):182–189

    Article  CAS  Google Scholar 

  154. Song G et al (2014) Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl Mater Interfaces 6(6):3915–3922

    Article  CAS  Google Scholar 

  155. Song G et al (2013) A low-toxic multifunctional nanoplatform based on Cu9S5@ mSiO2 core-shell nanocomposites: combining photothermal-and chemotherapies with infrared thermal imaging for cancer treatment. Adv Func Mater 23(35):4281–4292

    Article  CAS  Google Scholar 

  156. Song H et al (2016) Silica nanopollens enhance adhesion for long-term bacterial inhibition. J Am Chem Soc 138(20):6455–6462

    Article  CAS  Google Scholar 

  157. Song H et al (2017) Plasmid DNA delivery: nanotopography matters. J Am Chem Soc 139(50):18247–18254

    Article  CAS  Google Scholar 

  158. Srinivas R et al (2009) Cationic amphiphiles: promising carriers of genetic materials in gene therapy. Chem Soc Rev 38(12):3326–3338

    Article  CAS  Google Scholar 

  159. Srinivasarao M, Low PS (2017) Ligand-targeted drug delivery. Chem Rev 117(19):12133–12164

    Article  CAS  Google Scholar 

  160. Stöber W et al (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  161. Subramaniam P et al (2012) Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery. Adv Mater 24(29):4014–4019

    Article  CAS  Google Scholar 

  162. Sun Q et al (2017) A photoresponsive and rod-shape nanocarrier: single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials 122:188–200

    Article  CAS  Google Scholar 

  163. Tang J et al (2013) Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv Mater 25(45):6569–6574

    Article  CAS  Google Scholar 

  164. Tong R et al (2014) Smart chemistry in polymeric nanomedicine. Chem Soc Rev 43(20):6982–7012

    Article  CAS  Google Scholar 

  165. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135

    Article  CAS  Google Scholar 

  166. Tsoi KM et al (2013) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46(3):662–671

    Article  CAS  Google Scholar 

  167. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Chem Rev 116:5338–5431

    Google Scholar 

  168. Von Maltzahn G et al (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10(7):545–552

    Article  Google Scholar 

  169. Walkey CD et al (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  CAS  Google Scholar 

  170. Wang D et al (2014) Fabrication of single-hole glutathione-responsive degradable hollow silica nanoparticles for drug delivery. ACS Appl Mater Interfaces 6(15):12600–12608

    Article  CAS  Google Scholar 

  171. Wang F et al (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692

    Article  CAS  Google Scholar 

  172. Wang H et al (2015) Biocompatible PEG-chitosan@ carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv Func Mater 25(34):5537–5547

    Article  CAS  Google Scholar 

  173. Wang H et al (2016) Design and synthesis of core–shell–shell upconversion nanoparticles for NIR-induced drug release, photodynamic therapy, and cell imaging. ACS Appl Mater Interfaces 8(7):4416–4423

    Article  CAS  Google Scholar 

  174. Wang H et al (2011) Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 32(11):2979–2988

    Article  CAS  Google Scholar 

  175. Wang H et al (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adenocarcinoma. Biomaterials 34(2):470–480

    Article  CAS  Google Scholar 

  176. Wang J et al (2016) MoS2 quantum dot@ polyaniline inorganic–organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl Mater Interfaces 8(37):24331–24338

    Article  CAS  Google Scholar 

  177. Wang R et al (2016) Well-defined peapod-like magnetic nanoparticles and their controlled modification for effective imaging guided gene therapy. ACS Appl Mater Interfaces 8(18):11298–11308

    Article  CAS  Google Scholar 

  178. Wang S et al (2010) Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angew Chem 122(22):3865–3869

    Article  Google Scholar 

  179. Wang S et al (2015) Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 39:206–217

    Article  Google Scholar 

  180. Wang S et al (2018) Adjuvant photothermal therapy inhibits local recurrences after breast-conserving surgery with little skin damage. ACS Nano 12(1):662–670

    Article  CAS  Google Scholar 

  181. Wang S et al (2017) A nanostructured molybdenum disulfide film for promoting neural stem cell neuronal differentiation: toward a nerve tissue-engineered 3D scaffold. Adv Biosyst 1(5):1600042

    Article  Google Scholar 

  182. Wang T et al (2018) Timely visualization of the collaterals formed during acute ischemic stroke with Fe3O4 nanoparticle-based MR imaging probe. Small 14(23):1800573

    Article  Google Scholar 

  183. Wang X et al (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116(18):10983–11060

    Article  CAS  Google Scholar 

  184. Wang Y et al (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7(3):2068–2077

    Article  CAS  Google Scholar 

  185. Woo DG et al (2009) The effect of electrical stimulation on the differentiation of hESCs adhered onto fibronectin-coated gold nanoparticles. Biomaterials 30(29):5631–5638

    Article  CAS  Google Scholar 

  186. Wu H et al (2014) Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 35(20):5369–5380

    Article  CAS  Google Scholar 

  187. Wu M et al (2016) Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv Mater 28(10):1963–1969

    Article  CAS  Google Scholar 

  188. Wu S-H et al (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875

    Article  CAS  Google Scholar 

  189. Wu X et al (2014) Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomed Nanotechnol Biol Med 10(2):297–312

    Google Scholar 

  190. Wu Y et al (2012) A quantum dot photoswitch for DNA detection, gene transfection, and live-cell imaging. Small 8(22):3465–3475

    Article  CAS  Google Scholar 

  191. Xia H et al (2016) pH-sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent Sci 2(11):802–811

    Article  CAS  Google Scholar 

  192. Xiao Q et al (2013) A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc 135(35):13041–13048

    Article  CAS  Google Scholar 

  193. Xie J et al (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079

    Article  CAS  Google Scholar 

  194. Xu F-J (2018) Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: from strategic design to nucleic acid delivery applications. Prog Polym Sci 78:56–91

    Article  CAS  Google Scholar 

  195. Xu F, Yang W (2011) Polymer vectors via controlled/living radical polymerization for gene delivery. Prog Polym Sci 36(9):1099–1131

    Article  CAS  Google Scholar 

  196. Xu G et al (2016) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 116(19):12234–12327

    Article  CAS  Google Scholar 

  197. Xu X et al (2018) Precision-guided nanospears for targeted and high-throughput intracellular gene delivery. ACS Nano 12(5):4503–4511

    Article  CAS  Google Scholar 

  198. Xu Y et al (2018) Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 47(2):586–625

    Article  CAS  Google Scholar 

  199. Xu ZP et al (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61(3):1027–1040

    Article  CAS  Google Scholar 

  200. Yan H et al (2018) “All-in-one” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous administration. Adv Func Mater 28(9):1705710

    Article  Google Scholar 

  201. Yan P et al (2014) A facile strategy to functionalize gold nanorods with polycation brushes for biomedical applications. Acta Biomater 10(8):3786–3794

    Article  CAS  Google Scholar 

  202. Yang D et al (2015) Current advances in lanthanide ion (Ln 3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev 44(6):1416–1448

    Article  CAS  Google Scholar 

  203. Yang K et al (2018) Cooperative assembly of magneto-nanovesicles with tunable wall thickness and permeability for MRI-guided drug delivery. J Am Chem Soc 140(13):4666–4677

    Article  CAS  Google Scholar 

  204. Yang K et al (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7):2206–2214

    Article  CAS  Google Scholar 

  205. Yang P et al (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698

    Article  CAS  Google Scholar 

  206. Yang S-T et al (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309

    Article  CAS  Google Scholar 

  207. Yang Y et al (2016) Facile synthesis of wormlike quantum dots-encapsulated nanoparticles and their controlled surface functionalization for effective bioapplications. Nano Res 9(9):2531–2543

    Article  CAS  Google Scholar 

  208. Yi C et al (2017) Anisotropic self-assembly of hairy inorganic nanoparticles. Acc Chem Res 50(1):12–21

    Article  CAS  Google Scholar 

  209. Yong Y et al (2015) Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9(12):12451–12463

    Article  CAS  Google Scholar 

  210. Yoo J et al (2017) Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotechnol 12(10):1006–1014

    Article  CAS  Google Scholar 

  211. Yu EY et al (2017) Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano 11(12):12067–12076

    Article  CAS  Google Scholar 

  212. Yu L et al (2016) “Manganese extraction” strategy enables tumor-sensitive biodegradability and theranostics of nanoparticles. J Am Chem Soc 138(31):9881–9894

    Article  CAS  Google Scholar 

  213. Yuan J-J et al (2007) Cross-linking of cationic block copolymer micelles by silica deposition. J Am Chem Soc 129(6):1717–1723

    Article  CAS  Google Scholar 

  214. Zeng X et al (2017) A drug-self-gated mesoporous antitumor nanoplatform based on pH-sensitive dynamic covalent bond. Adv Func Mater 27(11):1605985

    Article  Google Scholar 

  215. Zhang J et al (2017) Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo. Theranostics 7(12):3007

    Article  CAS  Google Scholar 

  216. Zhang L et al (2016) Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew Chem Int Ed 55(6):2118–2121

    Article  CAS  Google Scholar 

  217. Zhang L et al (2014) Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B 2(5):452–470

    Article  CAS  Google Scholar 

  218. Zhang L et al (2011) Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials 32(20):4604–4608

    Article  CAS  Google Scholar 

  219. Zhang Q et al (2014) Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Func Mater 24(17):2450–2461

    Article  CAS  Google Scholar 

  220. Zhang R et al (2016) Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy. Adv Mater 28(30):6345–6352

    Article  CAS  Google Scholar 

  221. Zhang S et al (2013) Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. J Am Chem Soc 135(15):5709–5716

    Article  CAS  Google Scholar 

  222. Zhang W et al (2018) Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv Func Mater 28(13):1706375

    Article  Google Scholar 

  223. Zhang Y et al (2015) Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl Mater Interfaces 7(32):18179–18187

    Article  CAS  Google Scholar 

  224. Zhao L et al (2014) Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv Func Mater 24(3):363–371

    Article  CAS  Google Scholar 

  225. Zhao N et al (2018) Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev 119(3):1666–1762

    Article  Google Scholar 

  226. Zhao Y-L, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42(8):1161–1171

    Article  CAS  Google Scholar 

  227. Zheng D-W et al (2016) Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 10(9):8715–8722

    Article  CAS  Google Scholar 

  228. Zheng X-Y et al (2017) Gd-dots with strong ligand–water interaction for ultrasensitive magnetic resonance renography. ACS Nano 11(4):3642–3650

    Article  CAS  Google Scholar 

  229. Zhou J et al (2018) Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 12(3):2858–2872

    Article  CAS  Google Scholar 

  230. Zhou J et al (2015) Silica nanotubes decorated by pH-responsive diblock copolymers for controlled drug release. ACS Appl Mater Interfaces 7(6):3618–3625

    Article  CAS  Google Scholar 

  231. Zhou Z et al (2017) T1–T2 dual-modal magnetic resonance imaging: from molecular basis to contrast agents. ACS Nano 11(6):5227–5232

    Article  CAS  Google Scholar 

  232. Zhu J et al (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415

    Article  CAS  Google Scholar 

  233. Zhu P et al (2018) Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 12(4):3780–3795

    Article  CAS  Google Scholar 

  234. Zoppe JO et al (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117(3):1105–1318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Rasheed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shafi, S., Zafar, S., Sarwar, Z., Rasool, M.H., Rasheed, T. (2022). Organic–Inorganic Nanohybrids in Medicine. In: Rizwan, K., Bilal, M., Rasheed, T., Nguyen, T.A. (eds) Hybrid Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4538-0_5

Download citation

Publish with us

Policies and ethics