Skip to main content

Gut Microbiome and Diet: Promising Approach for Treatment of Cognitive Impairment

  • Chapter
  • First Online:
Gut Microbiome in Neurological Health and Disorders

Part of the book series: Nutritional Neurosciences ((NN))

  • 645 Accesses

Abstract

Human gastrointestinal microbiota is a key regulator of the brain and behavior in both healthy and disordered conditions. Neurotransmitters, change in the intestinal barrier and enteric sensors, bacteria-derived short-chain fatty acids, and immune regulators support in bidirectional cross-talk between brain and gut. Gut microbiota and their derived metabolites elicit host immune response by inducing cytokines and chemokine production, which further cause inflammation in the central nervous system and associated with the pathogenesis of brain disorders for instance pain, anxiety, depression, and age-associated neurodegenerative disorders with cognitive impairment. An increase in proinflammatory microbes and a decrease in anti-inflammatory microbes in the microbiome cause gut dysbiosis and strongly reflected in numerous disease conditions including neurological diseases with cognitive impairment. The treatment availability of these diseases is limited. Here, in this chapter, we are discussing different ways to improve gut microbiome comprising high-fiber diet, probiotics, genetically modified probiotic bacteria (GMP), fecal microbiota transplantation (FMT), and physical workout and exploring their therapeutic potential to cure neurological diseases including cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari E, Asemi Z, Kakhaki RD et al (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 8:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen JM, Miller MEB, Pence BD et al (2015) Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J Mice. J Appl Physiol 118:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Allen JM, Mailing LJ, Cohrs J et al (2018) Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 9:115–130

    Article  CAS  PubMed  Google Scholar 

  • Azm SAN, Djazayeri A, Safa M et al (2018) Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl Physiol Nutr Metab 43:718–726

    Article  CAS  Google Scholar 

  • Bakken JS, Borody T, Brandt LJ et al (2011) Treating clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9:1044–1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Beilharz JE, Kaakoush NO, Maniam J et al (2016) The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav Immun 57:304–313

    Article  PubMed  Google Scholar 

  • Bienenstock J, Kunze W, Forsythe P (2015) Microbiota and the gut-brain axis. Nutr Rev 73:28–31

    Article  PubMed  Google Scholar 

  • Bonfili L, Cecarini V, Berardi S et al (2017) Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7:2426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandt LJ, Aroniadis OC (2013) An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc 78:240–249

    Article  PubMed  Google Scholar 

  • Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:26ra158

    Article  CAS  Google Scholar 

  • Calvani R, Picca A, Lo Monaco MR et al (2018) Of microbes and minds: a narrative review on the second brain aging. Front Med 5:53

    Article  Google Scholar 

  • Cammarota G, Ianiro G, Gasbarrini A (2014) Fecal microbiota transplantation for the treatment of clostridium difficile infection: a systematic review. J Clin Gastroenterol 48:693–702

    Article  PubMed  Google Scholar 

  • Campbell SC, Wisniewski PJ, Noji M et al (2016) The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One 11. e0150502

    Google Scholar 

  • Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591

    Article  CAS  PubMed  Google Scholar 

  • Caputi V, Giron MC (2018) Microbiome-gut-brain axis and toll-like receptors in parkinson’s disease. Int J Mol Sci 19:1689

    Article  PubMed Central  CAS  Google Scholar 

  • Carter CS, Morgan D, Verma A et al (2020) Therapeutic delivery of ang(1-7) via genetically modified probiotic: a dosing study. J Gerontol A Biol Sci Med Sci 75:1299–1303

    Article  CAS  PubMed  Google Scholar 

  • Cassilhas RC, Tufik S, De Mello MT (2016) Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci 73:975–983

    Article  CAS  PubMed  Google Scholar 

  • Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017;357:eaaf9794

    Google Scholar 

  • Chin SM, Sauk J, Mahabamunuge J et al (2017) Fecal microbiota transplantation for recurrent clostridium difficile infection in patients with inflammatory bowel disease: a single-center experience. Clin Gastroenterol Hepatol 15:597–599

    Article  PubMed  Google Scholar 

  • Choi HH, Cho YS (2016) Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clinical Endoscopy 49:257–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke SF, Murphy EF, O’Sullivan O et al (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63:1913–1920

    Article  CAS  PubMed  Google Scholar 

  • Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    Article  PubMed  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    Article  CAS  PubMed  Google Scholar 

  • Davari S, Talaei SA, Alaei H et al (2013) Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240:287–296

    Article  CAS  PubMed  Google Scholar 

  • Davidson TL, Jones S, Roy M et al (2019) The cognitive control of eating and body weight: it’s more than what you “think.”. Front Psychol 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  • De Palma G, Blennerhassett P, Lu J et al (2015) Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 6:7735

    Article  PubMed  CAS  Google Scholar 

  • Devlin AS, Fischbach MA (2015) A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol 11:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez LJ, Barbagallo M (2018) Nutritional prevention of cognitive decline and dementia. Acta Biomed 89:276–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eiseman B, Silen W, Bascom GS et al (1958) Fecal enema as an adjunct in the treatment of pseudomembranous. Surgery 44:854–859

    CAS  PubMed  Google Scholar 

  • El Aidy S, Dinan TG, Cryan JF (2015) Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 37:954–967

    Article  CAS  PubMed  Google Scholar 

  • Erickson KI, Voss MW, Prakash RS et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108:3017–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar E (2002) Hypertension and coronary heart disease. J Hum Hypertens 16:S61–S63

    Article  PubMed  Google Scholar 

  • Forsythe P, Bienenstock J, Kunze WA (2014) Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol 817:115–133

    Article  PubMed  Google Scholar 

  • Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    Article  CAS  PubMed  Google Scholar 

  • Fulde M, Hornef MW (2014) Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 260:21–34

    Article  CAS  PubMed  Google Scholar 

  • Gerding DN (2005) Metronidazole for Clostridium difficile-associated disease: is it okay for mom? Clin Infect Dis 40:1598–1600

    Article  CAS  PubMed  Google Scholar 

  • Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutrients 3:637–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebert LE, Scherr PA, Bienias JL et al (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122

    Article  PubMed  Google Scholar 

  • Huang L, Ma H, Li Y et al (2012) Antihypertensive activity of recombinant peptide IYPR expressed in Escherichia coli as inclusion bodies. Protein Expr Purif 83:15–20

    Article  CAS  PubMed  Google Scholar 

  • Imdad A, Nicholson MR, Tanner-Smith EE et al (2018) Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev 11:CD012774

    PubMed  Google Scholar 

  • Kamada N, Chen GY, Inohara N et al (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SS, Jeraldo PR, Kurti A et al (2014) Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 9:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelly CR, Khoruts A, Staley C et al (2016) Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection a randomized trial. Ann Intern Med 165:609–616

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy PJ, Cryan JF, Dinan TG et al (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112:399–412

    Article  CAS  PubMed  Google Scholar 

  • Kern T, Blond MB, Hansen TH et al (2020) Structured exercise alters the gut microbiota in humans with overweight and obesity—A randomized controlled trial. Int J Obes 44:125–135

    Article  Google Scholar 

  • Khan NA, Raine LB, Drollette ES et al (2015) Dietary fiber is positively associated with cognitive control among prepubertal children. J Nutr 145:143–149

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kang H (2019) Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice. FASEB J 33:5772–5781

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Yun JM (2018) Association between diets and mild cognitive impairment in adults aged 50 years or older. Nutr Res Pract 12:415–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Sugahara H, Shimada K et al (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7:13510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konturek PC, Haziri D, Brzozowski T et al (2015) Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol 66:483–491

    CAS  PubMed  Google Scholar 

  • Lambert JE, Myslicki JP, Bomhof MR et al (2015) Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab 40:749–752

    Article  PubMed  Google Scholar 

  • Leblhuber F, Steiner K, Schuetz B et al (2018) Probiotic supplementation in patients with Alzheimer’s dementia - an explorative intervention study. Curr Alzheimer Res 15:1106–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhao F, Wang Y et al (2017) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Xu K, Du T et al (2018) Recombinant probiotics expressing angiotensin-(1-7) improves glucose metabolism and diabetes-induced renal and retinal injury. Diabetes, 67. 33-LB

    Google Scholar 

  • Lichtwark IT, Newnham ED, Robinson SR et al (2014) Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Ther 40:160–170

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun J, Wang F et al (2015) Neuroprotective effects of clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed Res Int 2015:412946

    PubMed  PubMed Central  Google Scholar 

  • Ma Q, Xing C, Long W et al (2019) Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation 16:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Mailing LJ, Allen JM, Pence BD et al (2019a) Behavioral response to fiber feedingis cohort-dependent and associated with gut microbiota composition in mice. Behav Brain Res 359:731–736

    Article  PubMed  Google Scholar 

  • Mailing LJ, Allen JM, Buford TW et al (2019b) Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev 47:75–85

    Article  PubMed  Google Scholar 

  • Marques FZ, Nelson E, Chu PY et al (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977

    Article  CAS  PubMed  Google Scholar 

  • McDonald LC, Gerding DN, Johnson S et al (2018) Clinical practice guidelines for clostridium difficile infection in adults and children: 2017 update by the infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA). Clin Infect Di 66:987–994

    Article  CAS  Google Scholar 

  • Molodecky NA, Soon IS, Rabi DM et al (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142. https://doi.org/10.1053/j.gastro.2011.10.001

  • Munukka E, Ahtiainen JP, Puigbó P et al (2018) Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front Microbiol 9:2323

    Article  PubMed  PubMed Central  Google Scholar 

  • Musa NH, Mani V, Lim SM et al (2017) Lactobacilli-fermented cow’s milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo. J Dairy Res 84:488–495

    Article  CAS  PubMed  Google Scholar 

  • Neuman H, Debelius JW, Knight R et al (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 39:509–521

    Article  PubMed  Google Scholar 

  • Ng SC, Hart AL, Kamm MA et al (2009) Mechanisms of action of probiotics: Recent advances. Inflamm Bowel Dis 15:300–310

    Article  CAS  PubMed  Google Scholar 

  • Nimgampalle M, Yellamma K (2017) Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J Clin Diagnostic Res 11:KC01–KC05

    Google Scholar 

  • Panza F, Lozupone M, Solfrizzi V et al (2018) Different cognitive frailty models and hHealth-and cognitive-related outcomes in older age: from epidemiology to prevention. J Alzheimers Dis 62:993–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Paramsothy S, Kamm MA, Kaakoush NO et al (2017) Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389:1218–1228

    Article  PubMed  Google Scholar 

  • Reddel S, Putignani L, Del Chierico F (2019) The impact of low-FODMAPs, Gluten-free, and ketogenic diets on gut microbiota modulation in pathological conditions. Nutrients 11:373

    Article  CAS  PubMed Central  Google Scholar 

  • Reid G (2016) Probiotics: definition, scope and mechanisms of action. Best Practice and Research: Clinical Gastroenterology 30:17–25

    Article  CAS  PubMed  Google Scholar 

  • Richards EM, Pepine CJ, Raizada MK et al (2017) The gut, its microbiome, and hypertension. Curr Hypertens Rep 19:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadowsky MJ, Khoruts A (2016) Faecal microbiota transplantation is promising but not a panacea. Nat Microbiol 1:16015

    Article  CAS  PubMed  Google Scholar 

  • Sampson TR, Mazmanian SK (2015) Control of brain development, function, and behavior by the microbiome. Cell Host and Microbe 17:565–576

    Article  CAS  PubMed  Google Scholar 

  • Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt TSB, Raes J, Bork P (2018) The human gut microbiome: from association to modulation. Cell 172:1198–1215

    Article  CAS  PubMed  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14. e1002533

    Google Scholar 

  • Sharon G, Garg N, Debelius J et al (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon CB, Lee-McMullen B, Phelan D et al (2015) The renin–angiotensin system and prevention of age-related functional decline: where are we now? Age (Omaha) 37:1–11

    Article  CAS  Google Scholar 

  • Sokol H, Landman C, Seksik P et al (2020) Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer SJ, Korosi A, Layé S et al (2017) Food for thought: how nutrition impacts cognition and emotion. npj Sci Food 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Steidler L, Hans W, Schotte L et al (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi H, Tanisawa K, Sun X et al (2018) Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol Rep 6:e13935

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas S, Izard J, Walsh E et al (2017) The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res 77:1783–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trubiano JA, Cheng AC, Korman TM et al (2016) Australasian society of infectious diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 46:479–493

    Article  CAS  PubMed  Google Scholar 

  • Tsai YL, Lin TL, Chang CJ et al (2019) Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 26:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Nood E, Vrieze A, Nieuwdorp M et al (2013) Duodenal infusion of donor feces for recurrent clostridium difficile. N Engl J Med 368:407–415

    Article  PubMed  CAS  Google Scholar 

  • Vindigni SM, Surawicz CM (2017) Fecal microbiota transplantation. Gastroenterol Clin N Am 46:171–185

    Article  Google Scholar 

  • Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–6.e7

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lee IS, Braun C et al (2016) Effect of probiotics on central nervous system functions in animals and humans: a systematic review. Journal of Neurogastroenterology and Motility 22:589–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber MA (1994) Coronary heart disease and hypertension. Am J Hypertens 7:146S–153S

    Article  CAS  PubMed  Google Scholar 

  • Wenisch C, Parschalk B, Hasenhündl M et al (1996) Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis 22:813–818

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Chen HH, Nie SP et al (2017) Gamma-aminobutyric acid increases the production of short-chain fatty acids and decreases pH values in mouse colon. Molecules 22:653

    Article  PubMed Central  CAS  Google Scholar 

  • Yang G, Jiang Y, Yang W et al (2015) Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Factories 14:202

    Article  CAS  Google Scholar 

  • Yang X, Yu D, Xue L et al (2020) Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 10:475–487

    Article  CAS  PubMed  Google Scholar 

  • Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Wang JY, Lai MG et al (2011) Treatment of mice with dextran sulfate sodium-induced colitis with human interleukin 10 secreted by transformed Bifidobacterium longum. Mol Pharm 8:488–497

    Article  CAS  PubMed  Google Scholar 

  • Youngster I, Sauk J, Pindar C et al (2014) Fecal microbiota transplant for relapsing clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis 58:1515–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelante T, Iannitti RG, Cunha C et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385

    Article  CAS  PubMed  Google Scholar 

  • Zhan G, Yang N, Li S et al (2018) Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY) 10:1257–1267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Critical reading and suggestions to improve the chapter by Dr. Pradeep Kumar, Ms. Chiara Mazzoni, and Ms. Avital Cher are highly appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soni, A., Gupta, P., Verma, A. (2022). Gut Microbiome and Diet: Promising Approach for Treatment of Cognitive Impairment. In: Tripathi, A.K., Kotak, M. (eds) Gut Microbiome in Neurological Health and Disorders. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-19-4530-4_12

Download citation

Publish with us

Policies and ethics