Skip to main content

Working Mechanism of Radiation Detectors Used in Nuclear Medicine

  • Chapter
  • First Online:
Radiation Safety Guide for Nuclear Medicine Professionals
  • 508 Accesses

Abstract

We use various radiation detectors in our day-to-day routine. They all work intending to detect the radiation but work on different techniques. The basic principle of radiation detection is discussed in this chapter which includes the interaction of radiation with matter, the qualities and characteristics of a good radiation detector, the types of various radiation detectors and their working mechanism. The voltage-response curve of gas-filled detectors and detectors based on ionization chamber, proportional counters and Geiger-Muller counters is discussed. The scintillation and semiconductor detectors used in nuclear medicine have also been explained. The mechanism and types of thermoluminescent dosimeters is discussed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knoll G. Ionization chambers. In: Radiation detection and measurement. 4th ed. New York: Wiley; 2010. p. 159/857.

    Google Scholar 

  2. Rajan JIG. Radiation monitoring instruments. In: Radiation oncology physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency; 2005. p. 101–22.

    Google Scholar 

  3. Attix FH. Introduction to radiological physics and radiation dosimetry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2004. p. 332.

    Google Scholar 

  4. Cherry SR, Sorenson JA, Phelps ME. Radiation detectors, Chapter 7, para A.2. In: Physics in nuclear medicine. London: Saunders; 2012. p. 91. ISBN: 9781416051985.

    Google Scholar 

  5. Frame P. https://www.orau.org. Oak Ridge: Oak Ridge Associated Universities [Online]. https://www.orau.org/health-physics-museum/collection/dosimeters/pocket/index.html. Accessed 20 Sept 2021.

  6. Knoll G. Ionization chambers. In: Radiation detection and measurement. 4th ed. New York: Wiley; 2010. p. 169/857, Para IVA.

    Google Scholar 

  7. Kathren RL, Howell WP. Calibration and field use of ionisation chamber survey instrument. BNWL-SA-2096, 1969.

    Google Scholar 

  8. Gun monitor. PLA Electro Appliances Pvt. Ltd. [Online]. http://plaelectro.com/survey/med/gm125.pdf. Accessed 10 Aug 2021.

  9. Model 375-31H, area monitor with neutron detector. https://ludlums.com/. [Online]. https://ludlums.com/products/all-products/product/model-375-31h. Accessed 25 Jan 2022.

  10. Tsoulfanidis N, Landsberger S. Measurement and detection of radiation. 4th ed. West Palm Beach, FL: CRC Press; 2015.

    Book  Google Scholar 

  11. Knoll G. Scintillation detector principles, Chapter 8. In: Radiation detection and measurement. 4th ed. New York: Wiley; 2010. p. 263/857.

    Google Scholar 

  12. Wikipedia. The Wikimedia Foundation, Inc. [Online]. https://en.wikipedia.org/wiki/Geiger_counter. Accessed 5 Apr 2022.

  13. den Hollander W, Kolar ZI. A centennial of spinthariscope and scintillation counting. Appl Radiat Isot. 2004;61(2-3):261–6.

    Article  Google Scholar 

  14. Knoll G. Scintillation detector principles. In: Radiation detection and measurement. New York: Wiley; 2010. p. 263/857.

    Google Scholar 

  15. Overdick M. Detectors for X-ray imaging and computed tomography. Chapter 4. In: Advances in health care technology. New York: Springer; 2006.

    Google Scholar 

  16. Duclos SJ, Greskovich CD, Lyons RJ, Vartuli JS, Hoffman DM, Riedner RJ, Lynch MJ. Development of the HiLightTM scintillator for computed tomography medical imaging. Nucl Instrum Methods Phys Res A. 2003;505(1-2):68–71.

    Article  CAS  Google Scholar 

  17. Chandra DLN. Gemstone detector: dual energy imaging via fast kVp switching. Med Radiol. 2010:35–41.

    Google Scholar 

  18. Stefan Ulzheimer JF. The Stellar detector, first fully integrated detector. Erlangen: Siemens Healthcare GmbH; 2016.

    Google Scholar 

  19. Lecoq P. Development of new scintillators for medical applications. Nucl Inst Methods Phys Res A. 2016;809:130–9.

    Article  CAS  Google Scholar 

  20. Knoll G. Other solid-state detectors, chapter 13, para IIIB. In: Radiation detection and measurement. New York: Wiley; 2010. p. 519/857.

    Google Scholar 

  21. Knoll G. Other solid-state detectors, chapter 13, para IID. In: Radiation detection and measurement. New York: Wiley; 2010. p. 522–4. /857.

    Google Scholar 

  22. United Nations. Report of the United Nations Scientific committee on the effects of atomic radiation. Sixty-seventh and sixty-eighth sessions. New York: United Nations; 2021.

    Google Scholar 

  23. Bhatt BC, Kulkarni MS. Thermoluminescent phosphors for radiation dosimetry. Defect Diffus Forum. 2014;347:179–227.

    Article  Google Scholar 

  24. Kry SF, Price M, Followill D, Mourtada F, Salehpour M. The use of LiF (TLD-100) as an out-of-field dosimeter. J Appl Clin Med Phys. 2007;8:169–75.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cavalieri TA, Castro VA, Siqueira PTD. Differences in TLD 600 and TLD 700 glow curves derived from distict mixed gamma/neutron field irradiations. International Nuclear Atlantic Conference, volumes. November 24–29, 2013.

    Google Scholar 

  26. Huda W. Thermoluminescent phosphors for radiation dosimetry. Defect Diffus Forum. 2014. Trans Tech Publications, Switzerland.

    Google Scholar 

  27. Knoll G. Miscellaneous detector type. In: Radiation detection and measurement. New York: Wiley; 2010. p. 778–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tandon, P., Prakash, D., Kheruka, S.C., Bhat, N.N. (2022). Working Mechanism of Radiation Detectors Used in Nuclear Medicine. In: Radiation Safety Guide for Nuclear Medicine Professionals. Springer, Singapore. https://doi.org/10.1007/978-981-19-4518-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4518-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4517-5

  • Online ISBN: 978-981-19-4518-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics