Skip to main content

Age-Girth Stand Structure of Himalayan Fir and Growth-NDVI Relationship in the Treeline Transects of Western Himalaya: An Ecological Perspective

  • Chapter
  • First Online:
Ecology of Himalayan Treeline Ecotone

Abstract

Subalpine forests are the important indicators of climate change and the future biomass stock under forest densification and treeline advancement. Analysing the stand structure and growth behaviour of trees is essential for the assessment of the functioning and sustainable management of forest resources. We provided the girth and age stand structure of Abies spp. (silver fir) from the treeline ecotone in the moist transects of Western Himalaya, and the relationship between fir growth and normalized difference vegetation index (NDVI) for assessing the forest health. The age and girth class analysis of fir trees from the four different treeline transects revealed the presence of mixed age and girth classes within the treeline ecotone. Fir trees were established around 200 years ago in the transects with subsequent densification, but the fir treeline showed static behaviour during the later part of the twentieth century. We also found variations in the girth size increment with age amongst the fir trees, which is statistically significant for the fir trees growing near treeline ecotone. The relationships between the tree-ring width chronologies and NDVI suggested the role of temperature in controlling forest health. Such studies could help in extending the existing vegetation cover records to more past for better evaluation of changes in forest health and interaction with climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari BS, Rawat GS, Rai ID, Bharti RR, Bhattacharyya S (2011) Ecological assessment of timberline ecotone in western Himalaya with special reference to climate change and anthropogenic pressures. IV Annual Report, Wildlife Institute of India, Dehradun, India

    Google Scholar 

  • Ali A (2019) Forest stand structure and functioning: current knowledge and future challenges. Ecol Indic 98:665–677

    Article  Google Scholar 

  • Ali A, Mattsson E (2017) Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems. Sci Total Environ 598:38–48

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Yan ER, Chen HY, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in eastern China. Biogeosciences 13(16):4627–4635

    Article  CAS  Google Scholar 

  • Anderson K, Fawcett D, Cugulliere A, Benford S, Jones D, Leng R (2020) Vegetation expansion in the subnival Hindu Kush Himalaya. Glob Chang Biol 26(3):1608–1625

    Article  PubMed  PubMed Central  Google Scholar 

  • Baishya R, Barik SK, Upadhaya K (2009) Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in Northeast India. Trop Ecol 50(2):295–304

    Google Scholar 

  • Beck PS, Andreu-Hayles L, D'Arrigo R, Anchukaitis KJ, Tucker CJ, Pinzón JE, Goetz SJ (2013) A large-scale coherent signal of canopy status in maximum latewood density of tree rings at arctic treeline in North America. Glob Planet Chang 100:109–118

    Article  Google Scholar 

  • Bharti RR, Adhikari BS, Rawat GS (2012) Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. Int J Appl Earth Obs Geoinf 18:472–479

    Google Scholar 

  • Bhattacharyya A, Yadav RR (1992) Tree growth and recent climatic changes in the western Himalaya. Geophytology 22:255–260

    Google Scholar 

  • Bhattacharyya A, Ranhotra PS, Gergan JT (2011) Vegetation vis-a-vis climate and glacier history during 12,400 to 5,400 yr BP from Dokriani transect, Garhwal Himalaya, India. J Geol Soc India 77:401–408

    Article  Google Scholar 

  • Bhavsar D, Kumar A, Roy A (2017) Applicability of NDVI temporal database for western Himalaya forest mapping using fuzzy-based PCM classifier. Eur Remote Sens 50(1):614–625

    Article  Google Scholar 

  • Bhutia Y, Gudasalamani R, Ganesan R, Saha S (2019) Assessing forest structure and composition along the altitudinal gradient in the state of Sikkim, eastern Himalayas, India. Forests 10(8):633

    Article  Google Scholar 

  • Brown S, Lugo AE (1992) Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia 17(1):8–18

    CAS  Google Scholar 

  • Brown S, Sathaye J, Cannell M, Kauppi PE (1996) Mitigation of carbon emissions to the atmosphere by forest management. Commonw For Rev 75:80–91

    Google Scholar 

  • Brown SL, Schroeder P, Kern JS (1999) Spatial distribution of biomass in forests of the eastern USA. For Ecol Manag 123(1):81–90. https://doi.org/10.1016/S0378-1127(99)00017-1

    Article  Google Scholar 

  • Bunker DE, De Clerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Naeem SM (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310:1029–1031

    Article  CAS  PubMed  Google Scholar 

  • Bunn AG, Hughes MK, Kirdyanov AV, Losleben M, Shishov VV, Berner LT, Oltchev A, Vaganov EA (2013) Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environ Res Lett 8(3):035034

    Article  Google Scholar 

  • Cairns DM, Lafon C, Moen J, Young A (2007) Influences of animal activity on treeline position and pattern: implications for treeline response to climate change. Phys Geogr 28:419–433

    Article  Google Scholar 

  • Camarero JJ, Gutierrez E (2004) Pace and pattern of recent tree line dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climate Change 63:181–200

    Article  Google Scholar 

  • Cao J, Gong Y, Adamowski JF, Deo RC, Zhu G, Dong X, Zhang X, Liu H, Xin C (2019) Effects of stand age on carbon storage in dragon spruce forest ecosystems in the upper reaches of the Bailongjiang River basin, China. Sci Rep 9:3005. https://doi.org/10.1038/s41598-019-39626-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion HG, Seth SK (1968) A revised survey of forest types of India. Manager of Publications, Government of India, Delhi, p 404

    Google Scholar 

  • Chaturvedi RK, Raghubanshi AS, Singh JS (2011) Carbon density and accumulation in woody species of tropical dry forest in India. For Ecol Manag 262:1576–1588

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11(2):371–384

    Article  Google Scholar 

  • Clark DB, Clark DA (1996) Abundance, growth and mortality of very large trees in neotropical lowland rain forest. For Ecol Manag 80(1–3):235–244

    Article  Google Scholar 

  • Clark J (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree ring standardization. PhD dissertation, University of Arizona, Tucson, AZ

    Google Scholar 

  • Cook ER, Briffa KR, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Methods of dendrochronology: applications in the environmental sciences. Springer, Cham, pp 104–123

    Chapter  Google Scholar 

  • Coulthard BL, Touchan R, Anchukaitis KJ, Meko DM, Sivrikaya F (2017) Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean. Environ Res Lett 12(8):084008

    Article  Google Scholar 

  • D’Arrigo RD, Malmstrom CM, Jacoby GC, Los SO, Bunker DE (2000) Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. Int J Remote Sens 21:2329–2336. https://doi.org/10.1080/01431160050029611

    Article  Google Scholar 

  • Dănescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182(2):319–333

    Article  PubMed  Google Scholar 

  • Djuikouo MNK, Doucet JL, Nguembou CK, Lewis SL, Sonk’e B (2010) Diversity and aboveground biomass in three tropical forest types in the dja biosphere reserve, Cameroon. Afr J Ecol 48(4):1053–1063

    Article  Google Scholar 

  • Du Q, Zhang M, Wang S, Che C, Ma R, Ma Z (2018) Changes in air temperature of China in response to global warming hiatus. Acta Geograph Sin 73:1748–1764

    Google Scholar 

  • Dusenge ME, Duarte AG, Way DA (2019) Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221(1):32–49

    Article  CAS  PubMed  Google Scholar 

  • Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW (2017) Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J Ecol 106:561–570

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, New York, p 567

    Google Scholar 

  • Gaire NP, Dhakal YR, Lekhak HC, Bhuju DR, Shah SK (2011) Dynamics of Abies spectabilis in relation to climate change at the Treeline ecotone in Langtang National Park, Nepal. J Sci Tech 12:220–229

    Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the Central Nepal Himalaya. Clim Past 10:1277–1290. https://doi.org/10.5194/cp-10-1277-2014

    Article  Google Scholar 

  • Gairola SC, Sharma M, Ghildiyal SK, Suyal S (2012) Regeneration dynamics of dominant tree species along an altitudinal gradient in moist temperate transect slopes of the Garhwal Himalaya. J For Res 23:53–63

    Article  CAS  Google Scholar 

  • Gamon JA, Kovalchuck O, Wong CYS, Harris A, Garrity SR (2015) Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 12(13):4149–4159

    Article  Google Scholar 

  • Ghimire SK, Sapkota IB, Oli BR, Prajuli RR (2008) Non timber Forest products of Nepal Himalaya. WWF Nepal, Kathmandu, Nepal

    Google Scholar 

  • Gucinski H, Vance E, Reiners WA (1995) Potential effects of global climate change. In: Ecophysiology of coniferous forests. Academic Press, New York, pp 309–331

    Chapter  Google Scholar 

  • Hao F, Zhang X, Ouyang W, Skidmore AK, Toxopeus AG (2012) Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River. Environ Model Assess 17(4):389–398

    Article  Google Scholar 

  • Harris IP, Jones D, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS 3.10. Int J Climatol 34:623–642

    Article  Google Scholar 

  • He G, Li Z, Zhen X, Shen HJ, Zhang L, Zhang R (2020) Influence of variations of hydrothermal conditions on normalized difference vegetation index in typical temperature zones along the east coast of China. Front Earth Sci 394. https://doi.org/10.3389/feart.2020.574101

  • He J, Shao X (2006) Relationships between tree-ring width index and NDVI of grassland in Delingha. Chin Sci Bull 51(9):1106–1114

    Google Scholar 

  • Holmes RL (1983) Computer–assisted quality control in tree–ring dating and measurement. Tree–Ring Bull 43:69–78

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2019) Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/srccl/download/

  • Jang RH, Lee SY, Lee EP, Lee SI, Kim EJ, Lee SH, You YH (2019) Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea. J Ecol Environ 43(1):1–10. https://doi.org/10.1186/s41610-019-0141-4

    Article  Google Scholar 

  • Jiapaer G, Liang S, Yi Q, Liu J (2015) Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol Indic 58:64–76. https://doi.org/10.1016/j.ecolind.2015.05.036

    Article  Google Scholar 

  • Karna YK (2012) Mapping above ground carbon using world view satellite image and lidar data in relationship with tree diversity and forests,” M.S. thesis, University of Twente, Enschede, Netherlands

    Google Scholar 

  • Kaufmann RK, D’Arrigo RD, Laskowski C, Myneni RB, Zhou L, Davi NK (2004) The effect of growing season and summer greenness on northern forests. Geophys Res Lett 31:L09205. https://doi.org/10.1029/2004GL019608

    Article  Google Scholar 

  • Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146(1–3):199–209

    Article  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246(2):208–221

    Article  Google Scholar 

  • Kirdyanov AV, Vaganov EA, Hughes MK (2007) Separating the climatic signal from tree-ring width and maximum latewood density records. Trees 21(1):37–44

    Article  Google Scholar 

  • Kirschbaum MUF (1996) The carbon sequestration potential of tree plantations in Australia. Environmental management: the role of eucalypts and other fast growing species. CSIRO Forestry and Forest Products, Canberra 77–89

    Google Scholar 

  • KoÈhl M, Neupane PR, Lotfiomran N (2017) The impact of tree age on biomass growth and carbon accumulation capacity: a retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One 12(8):e0181187. https://doi.org/10.1371/journal.pone.0181187

    Article  CAS  Google Scholar 

  • Kumari N, Srivastava A, Dumka UC (2021) A long-term spatiotemporal analysis of vegetation greenness over the himalayan region using google earth engine. Climate 9(7):109

    Article  Google Scholar 

  • Laclau P (2003) Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in Northwest Patagonia. For Ecol Manag 180:317–333

    Article  Google Scholar 

  • Leavitt SW, Chase TN, Rajagopalan B, Lee E, Lawrence PJ (2008) Southwestern U.S. tree-ring carbon isotope indices as a possible proxy for reconstruction of greenness of vegetation. Geophys Res Lett 35:L12704. https://doi.org/10.1029/2008GL033894

    Article  CAS  Google Scholar 

  • Lei X, Wang W, Peng C (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can J For Res 39:1835–1847

    Article  Google Scholar 

  • Liang E, Wang Y, Eckstein D, Luo T (2011) Little change in the fir tree-line position on the southeastern Tibetan plateau after 200 years of warming. New Phytol 190:760–769

    Article  PubMed  Google Scholar 

  • Liang EY, Eckstein D, Liu HY (2009) Assessing the recent grassland greening trend in a long–term context based on tree–ring analysis: a case study in North China. Ecol Indic 9:1280–1283

    Article  Google Scholar 

  • Liu R, Song Y, Liu Y, Li X, Song H, Sun C, Wang L (2021) Changes in the tree-ring width-derived cumulative normalized difference vegetation index over Northeast China during 1825 to 2013 CE. Forests 12(2):241

    Article  Google Scholar 

  • Liu RS, Liu Y, Li Q, Song HM, Li XX, Sun CF, Cai QF, Song Y (2019) Seasonal palmer drought severity index reconstruction using tree–ring widths from multiple sites over the central–western Da Hinggan Mountains, China since 1825 AD. Clim Dyn 53:3661–3674

    Article  Google Scholar 

  • Lopatin E, Kolstrom T, Spiecker H (2006) Determination of forest growth trends in Komi Republic (northwestern Russia): combination of tree-ring analysis and remote sensing data. Boreal Environ Res 11(5):341

    Google Scholar 

  • Luyssaert S, Schulze ED, BoÈrner A, Knohl A, Hessenmo Èller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215. https://doi.org/10.1038/nature07276. PMID: 18784722

    Article  CAS  PubMed  Google Scholar 

  • Malmström CM, Thompson MV, Juday GP, Los SO, Randerson JT, Field CB (1997) Interannual variation in global-scale net primary production: testing model estimates. Global Biogeochem Cycles 11(3):367–392

    Article  Google Scholar 

  • Mandal RA, Dutta IC, Jha PK, Karmacharya S (2013) Relationship between carbon stock and plant biodiversity in collaborative forests in Terai, Nepal. Int Sch Res Notices 2013:625767

    Google Scholar 

  • Mokria M, Tolera M, Sterck FJ, Gebrekirstos A, Bongers F, Decuyper M, Sass-Klaassen U (2017) The frankincense tree Boswellia neglecta reveals high potential for restoration of woodlands in the horn of Africa. For Ecol Manag 385:16–24

    Article  Google Scholar 

  • Nagy L (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. In: Biology and environment: Proceedings of the royal Irish academy; pp 335–341

    Google Scholar 

  • Naif SS, Mahmood DA, Al-Jiboori MH (2020) Seasonal normalized difference vegetation index responses to air temperature and precipitation in Baghdad. Open Agric 5(1):631–637

    Article  Google Scholar 

  • Nanda SA, Reshi ZA, Ul-haq M, Lone AB, Mir SA (2018) Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop Ecol 59(2):211–224

    Google Scholar 

  • Negi JDS, Manhas RK, Chauhan PS (2003) Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Curr Sci 85:1528–1531

    CAS  Google Scholar 

  • Ning T, Liu W, Lin W, Song X (2015) NDVI variation and its responses to climate change on the northern loess plateau of China from 1998 to 2012. Adv Meteorol 2015:1

    Article  Google Scholar 

  • Odland A (2015) Effect of latitude and mountain height on the timberline (Betula pubescens ssp. czerpanovii) elevation along the central Scandinavian mountain range. Fennia 193(2):260–270

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Article  CAS  PubMed  Google Scholar 

  • Panthi S, Bräuning A, Zhou ZK, Fan ZX (2017) Tree rings reveal recent intensified spring drought in the central Himalaya, Nepal. Glob Planet Chang 157:26–34

    Article  Google Scholar 

  • Parihar DS (2021) Timber line delineations using NDVI techniques in the Gori Ganga watershed of Kumaun Himalaya, Uttarakhand. J Res Environ Earth Sci 7(4):40–45

    Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Grabherr G (2002) High Mountain summits as sensitive indicators of climate change effects on vegetation patterns: the “multi summit-approach” of GLORIA (global observation research initiative in alpine environments). Adv Glob Chang Res 9:45–51. https://doi.org/10.1007/0-306-48051-4_6

    Article  Google Scholar 

  • Pokhrel S, Sherpa C (2020) Analyzing the relationship, distribution of tree species diversity, and above-ground biomass on the Chitwan-Annapurna landscape in Nepal. Int J For Res:2789753. https://doi.org/10.1155/2020/2789753

  • Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcon A, Alvarez-Sanchez J, Ascarrunz N, Balvanera P, Barajas-Guzman G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, de Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernandez-Mendez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manriquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martinez-Ramos M, Martinez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Munoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Perez-Garcia EA, Renteria LY, Rodriguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simoes M, Sinclair FL, Souza PF, Souza FC, Stropp J, terSteege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Pena-Claros M (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328

    Article  Google Scholar 

  • Rai ID, Adhikari BS, Rawat GS, Bargali K (2012) Community structure along timberline ecotone in relation to micro-topography and disturbances in Western Himalaya. Not Sci Biol 4(2):41–52

    Article  Google Scholar 

  • Ranhotra PS, Bhattacharyya A (2013) Modern Vegetational distribution and pollen dispersal study within Gangotri glacier transect, Garhwal Himalaya. J Geol Soc India 82:133–142

    Article  Google Scholar 

  • Rinn F (2003) TSAP-win: time series analysis and presentation for dendrochronology and related applications. Frank Rinn, Heidelberg

    Google Scholar 

  • Roy I, Ranhotra PS, Shekhar M, Bhattacharyya A, Ghosh R, Sharma YK (2021) Modern pollen-vegetation relationships along the vegetation gradient in the Bhagirathi transect, Western Himalaya, India. J Geol Soc India 97:571–578. https://doi.org/10.1007/s12594-021-1732-0

    Article  Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265

    Article  Google Scholar 

  • Shah SK, Pandey U, Mehrotra N, Wiles GC, Chandra R (2019) A winter temperature reconstruction for the Lidder transect, Kashmir, northwest Himalaya based on tree-rings of Pinus wallichiana. Clim Dyn 53(7–8):4059–4075

    Article  Google Scholar 

  • Shang HM, Wei WS, Yuan YJ, Yu SL, Zhang RB, Hong JC, Chen F, Zhang TW, Fan ZA (2016) Normalized vegetation variation index reconstruction based on the tree-ring width in Central Tibet. J Lanzhou Univ Nat Sci 52(1):18–24. (in Chinese, with English abstract)

    Google Scholar 

  • Sharma CM, Baduni NP, Gairola S, Ghildiyal SK, Suyal S (2010) The effect of slope aspects on the forest composition, community structure and soil nutrient status of some major natural temperate forest types of Garhwal Himalayan. J For Res 21:331–337

    Article  CAS  Google Scholar 

  • Sharma CM, Tiwari OP, Rana YS, Krishan R, Mishra AK (2018) Elevational behaviour on dominance–diversity, regeneration, biomass and carbon storage in ridge forests of Garhwal Himalaya, India. For Ecol Manag 424:105–120

    Article  Google Scholar 

  • Shi Z, Xu L, Dong L, Gao J, Yang X, Lü S, Feng C, Shang J, Song A, Guo H, Zhang X (2015) Growth–climate response and drought reconstruction from tree-ring of Mongolian pine in Hulunbuir, Northeast China. J Plant Ecol 9(1):51–60

    Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2014) Recent treeline dynamics are similar between dry and Mesic areas of Nepal, central Himalaya. J Plant Ecol 1–12:347. https://doi.org/10.1093/jpe/rtu035

    Article  Google Scholar 

  • Singh CP, Mohapatra J, Pandya HA, Gajmer B, Sharma N, Shrestha DG (2018a) Evaluating changes in treeline position and land surface phenology in Sikkim Himalaya. Geocarto Int 35:453. https://doi.org/10.1080/10106049.2018.1524513

    Article  Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102(4):559–562

    Google Scholar 

  • Singh J, Yadav RR (2005) Spring precipitation variations over the western Himalaya, India, since AD 1731 as deduced from tree rings. J Geophys Res Atmos 110(D1). https://doi.org/10.1029/2004JD004855

  • Singh J, Yadav RR (2014) Chir pine ring-width thermometry in western Himalaya, India. Curr Sci:735–738. https://doi.org/10.18520/cs%2Fv106%2Fi5%2F735-738

  • Singh S, Verma AK (2018) Biomass and carbon stocks in different forest types of Western Himalaya. Trop Ecol 59(4):647–658

    CAS  Google Scholar 

  • Singh U, Phulara M, David B, Ranhotra PS, Shekhar M, Bhattacharyya A, Dhyani R, Joshi R, Pal AK (2018b) Static tree line of Himalayan silver fir since last several decades at Tungnath, Western Himalaya. Trop Ecol 59(2):351–363

    Google Scholar 

  • Siyum ZG, Ayoade JO, Onilude MA, Feyissa MT (2018) Relationship between space-based vegetation productivity index and radial growth of Main tree species in the dry Afromontane Forest remnants of northern Ethiopia. J Appl Sci Environ Manag 22(11):1781–1790

    Google Scholar 

  • Speed JDM, Austrheim G, Hester AJ, Mysterud A (2011) Growth limitation of mountain birch caused by sheep browsing at the altitudinal treeline. For Ecol Manag 261:1344–1352

    Article  Google Scholar 

  • Speer JH (2010) Fundamentals of tree ring research. The University of Arizona Press, Tucson

    Google Scholar 

  • Terakunpisut JN, Gajaseni RN (2007) Carbon sequestration potential in aboveground biomass of thong Phaphun national forest, Thailand. Appl Ecol Environ Res 5:93–102

    Article  Google Scholar 

  • Thapa UK, Shah SK, Gaire NP, Bhuju DR (2015) Spring temperatures in the far-western Nepal Himalaya since AD 1640 reconstructed from Picea smithiana tree-ring widths. Clim Dyn 45(7–8):2069–2081

    Article  Google Scholar 

  • Udo S, Andreas B, Peter F, Anja CM, Bruno R, Markus Z (2011) GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050

  • Upadhaya K (2015) Structure and floristic composition of subtropical broad-leaved humid forest of Cherapunjee in Meghalaya, Northeast India. J Biodivers Manag For 4:2

    Google Scholar 

  • Vicente-Serrano SM, Camarero JJ, Olano JM, MartínHernández N, Pea-Gallardo M, TomásBurguera M, Gazol A, Azorin-Molina C, Bhuyan U, Kenawy AE (2016) Diverse relationships between forest growth and the normalized difference vegetation index at a global scale. Remote Sens Environ 187:14–29

    Article  Google Scholar 

  • Wang J, Rich PM, Price KP, Kettle WD (2004) Relations between NDVI and tree productivity in the central Great Plains. Int J Remote Sens 25(16):3127–3138

    Article  Google Scholar 

  • Wang W, Lei X, Ma Z, Kneeshaw DD, Peng C (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. For Sci 57:506–515

    Google Scholar 

  • Wang WZ, Liu XH, Chen T, An WL, Xu GB (2010) Reconstruction of regional NDVI using tree-ring width chronologies in the Qilian Mountains, northwestern China. Chin J Plant Ecol 34:1033–1044

    Google Scholar 

  • Wang X, Li Y, Wang X, Li Y, Lian J, Gong X (2021) Temporal and spatial variations in NDVI and analysis of the driving factors in the Desertified areas of northern China from 1998 to 2015. Front Environ Sci 9:633020

    Article  Google Scholar 

  • Wang YJ, Lu RJ, Ma YZ, Meng HW, Gao SY (2014) Response to climate change of different tree species and NDVI variation since 1923 in the middle arid region of Ningxia, China. Sci Cold Arid Reg 6(1):30–36. https://doi.org/10.3724/SP.J.1226.2014.00030

    Article  Google Scholar 

  • Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol Climatol 23(2):201–213

    Article  Google Scholar 

  • Yadav RR, Braeuning A, Singh J (2011) Tree ring inferred summer temperature variations over the last millennium in western Himalaya, India. Clim Dyn 36:1545–1554

    Article  Google Scholar 

  • Yadav RR, Park WK, Bhattacharyya A (1997) Dendroclimatic reconstruction of April-May temperature fluctuations in the western Himalaya of India since A.D. 1698. Quat Res 48:187–191

    Article  Google Scholar 

  • Yadav RR, Park WK, Bhattacharyya A (1999) Spring-temperature variations in western Himalaya, India, as reconstructed from tree-rings: AD 1390-1987. The Holocene 9:85–90

    Article  Google Scholar 

  • Yadav RR, Singh J (2002) Tree-ring-based spring temperature patterns over the past four centuries in western Himalaya. Quat Res 57(3):299–305

    Article  Google Scholar 

  • Yuan Z, Wang S, Ali A, Gazol A, Ruiz-Benito P, Wang X, Loreau M (2018) Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Ann For Sci 75(3):1–13

    Article  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhang R, Lu B, Mambetov BT, Kelgenbayev N, Dosmanbetov D, Huang L (2018) Picea schrenkiana tree-ring chronologies development and vegetation index reconstruction for the Alatau Mountains, Central Asia. Geochronometria 45(1):107–118

    Article  Google Scholar 

  • Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. J Ecol 103:1245–1252

    Article  Google Scholar 

  • Zhou T, Shi P, Jia G, Dai Y, Zhao X, Shangguan W, Du L, Wu H, Luo Y (2015) Age-dependent forest carbon sink: estimation via inverse modeling. J Geophys Res Biogeosci 120:2473–2492. https://doi.org/10.1002/2015JG002943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Birbal Sahni Institute of Palaeosciences, Lucknow for the necessary support to carry out this work and permission to publish this work (BSIP/RDCC/Publication No. 33/2021-22). The authors extend sincere acknowledgement to MoEF & CC, New Delhi for financial support (1886/XII-86/2016) under National Mission on Himalayan Studies, and the Space Applications Centre (SAC) - ISRO, Ahmedabad, India, under the Studies on Harnessing Remote Sensing for Environment and Climate (SHRESTI) programme (SAC/EPSA/BPSG/ALPINE/SHRESTI/09/2019). The DAAD fellowship by FAU, Germany is duly acknowledged by the author BDC. The support provided by the Forest Departments of Uttarakhand, Himachal Pradesh and Kashmir state for sample collection is deeply accredited. We are highly grateful to Dr. R. S. Rawal (Ex-Director GBPNIHESD, Almora) and Prof. S. P. Singh, Coordinator of the project for their kind support and valuable inputs in this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chinthala, B.D. et al. (2023). Age-Girth Stand Structure of Himalayan Fir and Growth-NDVI Relationship in the Treeline Transects of Western Himalaya: An Ecological Perspective. In: Singh, S.P., Reshi, Z.A., Joshi, R. (eds) Ecology of Himalayan Treeline Ecotone. Springer, Singapore. https://doi.org/10.1007/978-981-19-4476-5_19

Download citation

Publish with us

Policies and ethics