Skip to main content

Understanding the Design Effects of Progress Indicators on Online Surveys

  • Conference paper
  • First Online:
[ ] With Design: Reinventing Design Modes (IASDR 2021)

Abstract

A progress indicator (PI) is often used to inform respondents of the task completion status of online surveys. When researchers conduct online surveys, reducing the dropout rate and the participants’ cognitive loads is important for improving the surveys’ efficiency. Although many studies have investigated the effect of using PIs with online surveys, it is unclear which PI design should be used to reduce the dropout rate and the participants’ perceived task load. Moreover, even in the Web content accessibility guidelines (WCAG), which should be followed in the building of websites to improve accessibility, the design guidelines for PIs are vague compared to those for other graphic elements. We noted that PIs have various designs and then created 25 types of PIs by combining design factors, labels, and bar graphs. We conducted an online survey through mTurk and collected 1,948 participants’ data. The online survey study results showed that the PI’s label design had a significant effect on the number of items the participants answered. In addition, we found that the respondents’ mental load changed significantly according to the combination of bar graph and label designs of the PI. This study provides strong support for designing the way a PI communicates the task process without reducing the speed of progress, which encourages respondents to answer more items and decreases their mental loads in online survey environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Becker, L.J.: Joint effect of feedback and goal setting on performance: A field study of residential energy conservation. J. Appl. Psychol. 63(4), 428 (1978)

    Article  Google Scholar 

  • Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s mechanical turk: a new source of inexpensive, yet high-quality data? (2016)

    Google Scholar 

  • Chang, J.C., Amershi, S., Kamar, E.: Revolt: collaborative crowdsourcing for labeling machine learning datasets. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. CHI 2017, pp. 2334–2346. Association for Computing Machinery, Denver, Colorado, USA (2017). https://doi.org/10.1145/3025453.3026044, isbn: 9781450346559

  • Clark, J.M., Paivio, A.: Dual coding theory and education. Educ. Psychol. Rev. 3(3), 149–210 (1991). https://doi.org/10.1007/BF01320076

    Article  Google Scholar 

  • Conrad, F., et al.: Impact of progress feedback on task completion: first impressions matter. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems. CHI EA 2005, pp. 1921–1924. Association for Computing Machinery, Portland, OR, USA (2005). https://doi.org/10.1145/1056808.1057057, isbn: 1595930027

  • Conrad, F.G., et al.: The impact of progress indicators on task completion. Interact. Comput. 22(5), 417–427 (2010)

    Article  Google Scholar 

  • Couper, M.P., Traugott, M.W., Lamias, M.J.: Web survey design and administration*. Public Opin. Q. 65(2), 230–253 (2001). https://doi.org/10.1086/322199. eprint: https://academic.oup.com/poq/article-pdf/65/2/230/5307018/650230.pdf. issn: 0033–362X

  • Couper, M.P.: Discussion: what can CAI learn from HCI. In: Proceedings of the Seminar on New Directions in Statistical Methodology, pp. 363–377 (1994)

    Google Scholar 

  • Crawford, S.D., Couper, M.P., Mark, Lamias, J.: Web surveys: perceptions of Burden. Soc. Sci. Comput. Rev. 19(2), 146–162 (2001). https://doi.org/10.1177/089443930101900202

  • Dillman, D.A., Smyth, J.D., Christian, L.M.: Internet, Phone, Mail, and Mixed-Mode Surveys: the Tailored Design Method. Wiley, Hoboken (2014)

    Google Scholar 

  • Dillman, D.A., Tortora, R.D., Bowker, D.: Principles for constructing web surveys. J. Meetings Am. Stat. Assoc. 64, 1–16 (1998)

    Google Scholar 

  • Drutsa, A., et al.: Crowdsourcing practice for efficient data labeling: aggregation, incremental relabeling, and pricing. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. SIGMOD 2020, pp. 2623–2627. Association for Computing Machinery, Portland, OR, USA (2020). https://doi.org/10.1145/3318464.3383127, isbn: 9781450367356

  • Egeln, L.S., Joseph, J.A.: Shopping cart abandonment in online shopping. Atlantic Mark. J. 1(1), 1 (2012)

    Google Scholar 

  • Galesic, M.: Dropouts on the web: effects of interest and burden experienced during an online survey. J. Official Stat. 22(2), 313 (2006)

    Google Scholar 

  • Gleicher, M., et al.: Perception of average value in multiclass scatterplots. IEEE Trans. Vis. Comput. Graph. 19(12), 2316–2325 (2013)

    Article  Google Scholar 

  • Google. Google Form. https://www.google.com/forms/about/. Accessed 2020[a]

  • . Google material design guideline for progress indicators. https://material.io/components/progress-indicators. Accessed 2020[b]

  • Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp. 904–908 (2006). https://doi.org/10.1177/154193120605000909

  • Healey, B., Macpherson, T., Kuijten, B.: An empirical evaluation of three web survey design principles. Mark. Bull. 16 (2005)

    Google Scholar 

  • Heerwegh, D.: Using progress indicators in web surveys. In: 59th AAPOR conference, Phoenix, Arizona (2004)

    Google Scholar 

  • Heerwegh, D., Loosveldt, G.: An experimental study on the effects of personalization, survey length statements, progress indicators, and survey sponsor logos in web surveys. J. Official Stat. 22(2), 191 (2006)

    Google Scholar 

  • Kaczmirek, L.: Human-survey interaction : usability and nonresponse in online surveys. English. an enhanced book version of this work is published by Herbert von Halem Verlag. Ph.D. thesis (2008). http://www.kaczmirek.de/book2008, https://madoc.bib.uni-mannheim.de/2150/

  • Soomin, K., Lee, J., Gweon, G.: Comparing data from Chatbot and web surveys: effects of platform and conversational style on survey response quality. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. CHI 2019, pp. 1–12. Association for Computing Machinery, Glasgow, Scotland, UK (2019). https://doi.org/10.1145/3290605.3300316, isbn: 9781450359702

  • Komatsu, T., Yamada, S.: Exploring auditory information to change users’ perception of time passing as shorter. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. CHI 2020, pp. 1–12. Association for Computing Machinery, Honolulu, HI, USA (2020). https://doi.org/10.1145/3313831.3376157, isbn: 9781450367080

  • Kukar-Kinney, M., Close, A.G.: The determinants of consumers’ online shopping cart abandonment. J. Acad. Mark. Sci. 38(2), 240–250 (2010). https://doi.org/10.1007/s11747-009-0141-5

    Article  Google Scholar 

  • Liu, M., Wronski, L.: Examining completion rates in web surveys via over 25,000 real-world surveys. Soc. Sci. Comput. Rev. 36(1), 116–124 (2018). https://doi.org/10.1177/0894439317695581

    Article  Google Scholar 

  • Locke, E.A.: The motivation to work: what we know. In: Advances in motivation and achievement, vol. 10, no. 2, pp. 375–412 (1997)

    Google Scholar 

  • Locke, E.A., Latham, G.P.: Work motivation and satisfaction: light at the end of the tunnel. Psychol. Sci. 1(4), 240–246 (1990). https://doi.org/10.1111/j.1467-9280.1990.tb00207.x

    Article  Google Scholar 

  • Matejka, J., et al.: The effect of visual appearance on the performance of continuous sliders and visual analogue scales. In: CHI 2016, pp. 5421–5432. Association for Computing Machinery, San Jose, California, USA (2016). https://doi.org/10.1145/2858036.2858063, isbn: 9781450333627

  • Matzat, U., Snijders, C., van der Horst, W.: Effects of different types of progress indicators on dropout rates in web surveys. Soc. Psychol. 40(1), 43–52 (2009)

    Article  Google Scholar 

  • Monkey, Survey. Survey Monkey question examples (2020). https://www.surveymonkey.com/mp/survey-question-examples/. Accessed 2020

  • Müller, H., Sedley, A.: Designing surveys for HCI research. In: CHI EA 2015, pp. 2485–2486. Association for Computing Machinery, Seoul, Republic of Korea (2015). https://doi.org/10.1145/2702613.2706683

  • Müller, H., Sedley, A., Ferrall-Nunge, E.: Survey research in HCI. In: Olson, J.S., Kellogg, W.A. (eds.) Ways of Knowing in HCI, pp. 229–266. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0378-8_10

    Chapter  Google Scholar 

  • Myers, B.A.: The importance of percent-done progress indicators for computer-human interfaces. SIGCHI Bull. 16(4), 11–17 (1985). https://doi.org/10.1145/1165385.317459

    Article  Google Scholar 

  • Nielsen, J.: Usability Engineering. Morgan Kaufmann, Burlington (1994)

    Google Scholar 

  • Nielsen, J., Rolf, M.: Heuristic evaluation of user inter-faces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI 1990, pp. 249–256. Association for Computing Machinery Seattle, Washington, USA (1990).https://doi.org/10.1145/97243.97281, isbn: 0201509326

  • Oviatt, S.: Human-centered design meets cognitive load theory: designing interfaces that help people think. In: Proceedings of the 14thACM International Conference on Multimedia. MM 2006, pp. 871–880. Association for Computing Machinery, Santa Barbara, CA, USA (2006). https://doi.org/10.1145/1180639.1180831, isbn: 1595934472

  • Paolacci, G., Chandler, J., Ipeirotis, P.G.: Running experiments on amazon mechanical Turk. Judgment Decis. Making 5(5), 411–419 (2010)

    Article  Google Scholar 

  • Ross, J., et al.: Who are the Crowdworkers? Shifting demographics in mechanical turk. In: CHI 2010 Extended Abstracts on Human Factors in Computing Systems. CHI EA 2010, pp. 2863–2872. Association for Computing Machinery, Atlanta, Georgia, USA (2010). https://doi.org/10.1145/1753846.1753873, isbn: 9781605589305

  • Sarraf, S., Tukibayeva, M.: Survey page length and progress indicators: what are their relationships to item nonresponse? New Dir. Inst. Res. 161, 83–97 (2014)

    Google Scholar 

  • Smyth, J.D., et al.: Effects of using visual design principles to group response options in web surveys (2006)

    Google Scholar 

  • Strang, H.R., Lawrence, E.C., Fowler, P.C.: Effects of assigned goal level and knowledge of results on arithmetic computation: a laboratory study. J. Appl. Psychol. 63(4), 446 (1978)

    Article  Google Scholar 

  • Streeter, S.B., et al.: Patient and plan characteristics affecting abandonment of oral oncolytic prescriptions. J. Oncol. Pract. 7(3S), 46s–51s (2011). https://doi.org/10.1200/JOP.2011.000316, PMID: 21886519

  • Tijdens, K.: Dropout rates and response times of an occupation search tree in a web survey. J. Official Stat. 30(1), 23–43 (2014). https://doi.org/10.2478/jos-2014-0002, https://content.sciendo.com/view/journals/jos/30/1/article-p23.xml

  • Tourangeau, R., Conrad, F.G., Couper, M.P.: The Science of Web Surveys. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  • Tukibayeva, M., Sarraf, S.: The relationships between survey page length, progress indicators, and item completion rates. Am. Educ. Res. Assoc. Annu. Meeting (2012)

    Google Scholar 

  • Villar, A., Callegaro, M., Yang, Y.: Where am I? a meta-analysis of experiments on the effects of progress indicators for web surveys. Soc. Sci. Comput. Rev. 31(6), 744–762 (2013). https://doi.org/10.1177/0894439313497468

  • W3C. Web Content Accessibility Guidelines. https://www.w3.org/WAI/standards-guidelines/wcag/. Accessed 2020

  • Yentes, R.D., et al.: Effects of survey progress bars on data quality and enjoyment. In: 27th annual meeting of the Society for Industrial and Organizational Psychology (2012)

    Google Scholar 

  • Yentes, R.D., et al.: Attention and data quality in online surveys: the role of survey length, progress bars, and time disclosure (2015)

    Google Scholar 

  • Zhang, J., Wu, X., Sheng, V.S.: Learning from crowdsourced labeled data: a survey. Artif. Intell. Rev. 46(4), 543–576 (2016). https://doi.org/10.1007/s10462-016-9491-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangsu Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, W., Lee, J., Lee, S. (2022). Understanding the Design Effects of Progress Indicators on Online Surveys. In: Bruyns, G., Wei, H. (eds) [ ] With Design: Reinventing Design Modes. IASDR 2021. Springer, Singapore. https://doi.org/10.1007/978-981-19-4472-7_92

Download citation

Publish with us

Policies and ethics