Skip to main content

Wireless Interface-Based Acquisition, Analysis, and Control System Using Master–Slave Approach for Chemical Laser

  • Conference paper
  • First Online:
Proceedings of Fifth International Conference on Inventive Material Science Applications

Abstract

The abstract is a mandatory element that should summarize the high-power flowing medium lasers being interdisciplinary in nature results in a very complex and huge systems. Acquisition system plays a significant role in demonstration of any laser system in real time, stored data both in numerical and graphical form to analysis decisively for further optimization of laser systems. Although laser systems can be easily established using wired acquisition schemes, they require intricate cabling and suffer from issues such as durability in harsh environments, flexibility, and portability during laser operation. Hence, from the perspective of development of future-ready field weapon systems, it is of the essence to implement a wireless (Wi-Fi) interface supported acquisition, analysis, and control system based on master–slave topology. The proposed scheme facilitates the development of flowing medium lasers and makes the acquisition system compact, flexible, portable with facility of remote and safe operation of flowing medium laser systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boreisho, A.S., Vovk, M.Y., Edigarev, A.D., Kiselev, I.A., Kulalaev, V.V., Morozov, A.V., Orlov, A.E, Smirnov, P.G.: Combustion-driven gas-dynamic CO2-laser on the basis of modern aviation engines. IOP series, J. Phys. Conf. Seri. 1565, 012021, 1–6 (2020). https://doi.org/10.1088/1742-6596/1565/1/012021

  2. McDermott, W.E., Pchlekin, N.R., Benard, D.J., Bonsek, R.R.: An electronic transition chemical laser. J. App. Phy. Letter. 32, 496 (1978). https://doi.org/10.1063/1.90088

    Article  Google Scholar 

  3. Behrens, W.H., Lohn, P.D., Endo, M., Walter, R.F.: Hydrogen and Deuterium Fluoride Chemical Lasers in Gas Lasers, pp. 341–367. CRC Press, Ny (2007)

    Google Scholar 

  4. Sagar, V., Chhaya, R.K., Mainuddin Borkar, M., Mittal, A.P.: Data acquisition system for arc-drives HF/DF chemical lasers. J. Instrument. Sci. Technol. 40, 262–274 (2012). https://doi.org/10.1080/10739149.2012.673197

  5. Luo, G., Chaoqi, H., Bo, P., Dianyuan, F.: A new fluid state laser system realizes laser output, high power lasers and applications. Proc. SPIE 7843(784311), 1–11 (2010). https://doi.org/10.1117/12.870197

  6. Chaoqi, H., Haitao, G., She, J., Xiaoxia, Qiao, Z., Fei, G., et al.: Neodymium fluid laser: laser emission in circulating state. J. Opt. Laser Technol. 44, 1633–1635 (2012). https://doi.org/10.1016/j.optlastec.2011.12.047

  7. Eroglu, A., Westrick, B.: General purpose wireless communication system using data acquisition. J. Comm. Netw. Sci. Res. 4, 48–53 (2012). https://doi.org/10.4236/cn.2012.41007

  8. Sa-ngasoongsong, A., Kunthon, J., Sarangan, V., Cai, X., Satish, T.S.B.: A low-cost, portable, high throughput wireless sensor system for phonocardiography applications. Sensors. ISSN 12(10851–10870), 1424–8220 (2012). https://doi.org/10.3390/s120810851

    Article  Google Scholar 

  9. Chen, S.L., Wang, S.R., Lin, Y.C., Chen, Y.Y.: A novel wireless data acquisition infrastructure for manufacturing equipment based on Wi-Fi. J. App. Mech. Mater. 764–765, 788–791 (2015). https://doi.org/10.4028/www.scientific.net/AMM.764-765.788

    Article  Google Scholar 

  10. Seungchan, L., Younghak, S., Soogil, W., Kiseon, K., Heung-No, L.: Review of wireless brain-computer interface system. INTECH. Chapter 11, 215–238 (2013). https://doi.org/10.5772/56436

    Article  Google Scholar 

  11. Mohamed, M.M., Omar, M.S., Zaghloul, M., Mohamed, E.: Design and development of wireless data acquisition system for natural gas station. J. Wirel. Commun. 7(5) (2015)

    Google Scholar 

  12. Bello, L.L., Kaczynski, G.A., Nolte, T.: Towards a robust real-time wireless link in a land monitoring application. IEEE 449–452 (2006). https://doi.org/10.1109/ETFA.2006.355237

  13. Dehui Kong, T.L., Xingang, Y., Sun, X., Wang, B., Liu, Q.: The research of long distance transmission based on metrological sensor network. Int. J. Fut. Gener. Commun. Network. 7(1), 59–70 (2014). https://doi.org/10.14257/ijfgcn.2014.7.1.06

  14. Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R., Estrin, D.: A wireless sensor network for structural monitoring. SenSys, Nov 3–5, 2004, pp. 13–24. Baltimore, Maryland, USA (2004). https://doi.org/10.1145/1031495.1031498

  15. Collins, D.: Wireless data acquisition in flight test networks. In: European Telemetry and Test Conference, pp. 225–232 (2016). https://doi.org/10.5162/etc2016/8.2

  16. Michael, A., Georgia, D., Kaffashi, F., Jacono, F.J., Loparo, K.A.: Information technology in critical care: review of monitoring and data acquisition systems for patient care and research. Sci. World J. 727694, 1/7–7/7 (2015). https://doi.org/10.1155/2015/727694

  17. Gowri, S., Vimali, J.S., Karthik, D.U. Jeffrey, G.A.J.: Real time traffic signal and speed violation control system of vehicles using IOT. In: International Conference on Computer Networks, Big Data and IoT, pp. 953–958. Springer (2019)

    Google Scholar 

  18. Subramanian, B., Selvakumar, A.S., Sachithanantham, M.J., Saikumar, S., Radhakrishnan, A.: Automatic railway gate control system using GPS. In: Inventive Communication and Computational Technologies, pp. 441–449. Springer (2021)

    Google Scholar 

  19. Beg, M.T., Tyagi, R.K., Rajesh, R., Singhal, G., Dawar, A.L.: Optical spectroscopic based in-line iodine flow measurement system—an application to COIL. Sensors Actuators B 109, 375–380 (2005). https://doi.org/10.1016/j.snb.2005.01.004

  20. Tyagi, R.K., Rajesh, R., Singhal, G., Dawar, A.L.: Real time data acquisition and control system for a chemical oxygen-iodine laser. J. Measur. Sci. Technol. 14, 1364–1372 (2003). https://doi.org/10.1088/0957-0233/14/8/323

  21. Beg, M.T., Tyagi, R.K., Rajesh, R., Singhal, G., Dawar, A.L.: Real time gas flow control and analysis for high power infrared gas lasers. Int. J. Infrared Millimeter Waves. 26(1), 91–105 (2005). https://doi.org/10.1007/s10762-004-2038-1

  22. Singhal, G., Tyagi, R.K., Maini, A.K.: Development of safe infrared gas lasers, optics and laser technology. J. Optics Laser Technol. 47, 56–63 (2013). https://doi.org/10.1016/j.optlastec.2012.07.026

  23. Siddique, M., Singhal, G., Tyagi, R.K., Maini, A.K.: Diagnostics and data acquisition for chemical oxygen iodine laser. IEEE Trans. Instrum. Meas. 61(6), 1747–1756 (2012). https://doi.org/10.1109/TIM.2011.2178727

    Article  Google Scholar 

  24. Dohare, R.K., Singhal, G.: Hybrid data acquisition system for flowing medium lasers. Defence Sci. J. 70(3), 285–291 (2020). https://doi.org/10.14429/dsj.70.14902

  25. Dohare, R.K., Kumar, S., Singhal, G.: Data acquisition system for chemical iodine generation suitable for flowing medium chemical oxygen iodine laser. Defence Sci. J. 71(6), 798–806 (2021). https://doi.org/10.14429/dsj.71.17026

  26. Dohare, R.K., Singhal, G.: Real time flow control system for precise gas feed in COIL. Defence Sci. J. 72(1), 91–97 (2022). https://doi.org/10.14429/dsj.72.17079

Download references

Acknowledgements

This work is supported by the Ministry of Electronics and Information Technology, Government of India under the Visvesvaraya Ph.D. scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Dohare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dohare, R.K., Mainuddin, Singhal, G. (2023). Wireless Interface-Based Acquisition, Analysis, and Control System Using Master–Slave Approach for Chemical Laser. In: Bindhu, V., Tavares, J.M.R.S., Chen, J.IZ. (eds) Proceedings of Fifth International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4304-1_14

Download citation

Publish with us

Policies and ethics