Skip to main content

Abstract

Given the need to develop new technologies to supply energy to the mining industry in Chile, and its industries that provide services to mining, the development of a wave project to generate energy through the movement of waves on the northern coasts is presented from the country. For this, an analysis of the different technologies that exist for wave energy generation was carried out, in order to understand the context in which it is designed. Measurements were made in the field regarding the height of the waves in the area where the equipment was installed, in order to size based on the characteristics of the waves. The project is based on the generation of electrical energy through a Pelton turbine, which is fed by fresh water at high pressure, which rotates the impellers of the turbine. There is a transformation of mechanical energy to electrical energy by means of a hydraulic system. Finally, the amount of energy that the system can produce was estimated, together with the valuation of the project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With respect to the surface of the molo.

References

  1. Flanagan, D.M.: Copper. In: Mineral Commodity Summaries 2021, pp 52–53. U.S. Geological Survey, Reston, Virginia, USA (2021)

    Google Scholar 

  2. Torres Albornoz, D.A.: Copper and manganese extraction through leaching processes (2021)

    Google Scholar 

  3. Montes, C.: Proyección de consumo de agua en la minería del cobre 2019–2030. In: COCHILCO. https://www.cochilco.cl/Listado%20Temtico/proyeccion%20agua%20mineria%20del%20cobre%202019-2030%20VF.pdf (2019). Accessed 6 Jan 2022

  4. SERNAGEOMIN.: Anuario de la Minería de Chile. Santiago, Chile (2020)

    Google Scholar 

  5. Toro, N., Jeldres, R.I., Órdenes, J.A., et al.: Manganese nodules in Chile, an alternative for the production of Co and Mn in the future—a review. Minerals 10, 674 (2020). https://doi.org/10.3390/min10080674

    Article  ADS  Google Scholar 

  6. Saldaña, M., Rodríguez, F., Rojas, A., et al.: Development of an empirical model for copper extraction from chalcocite in chloride media. Hemijska Industrija 74, 285–292 (2020). https://doi.org/10.2298/HEMIND200424031S

    Article  Google Scholar 

  7. 4e Chile.: Evento abordará los desafíos que trae la Ley de Eficiencia Energética para la minería chilena. In: Programa de Energías Renovables y Energéticas en Chile. https://www.4echile.cl/noticias/evento-abordara-los-desafios-que-trae-la-ley-de-eficiencia-energetica-para-la-mineria-chilena/ (2021). Accessed 7 Jan 2022

  8. Los desafíos energéticos de la minería. In: Electricidad: La Revista Energética de Chile. https://www.revistaei.cl/reportajes/los-desafios-energeticos-la-mineria/ (2018). Accessed 7 Jan 2022

  9. El 17% de la energía producida en Chile proviene de fuentes renovables no convencionales. In: Electricidad: La Revista Energética de Chile. https://www.revistaei.cl/2017/04/24/17-la-energia-producida-chile-proviene-fuentes-renovables-no-convencionales/ (2017). Accessed 7 Jan 2022

  10. Grágeda, M., Escudero, M., Alavia, W., et al.: Review and multi-criteria assessment of solar energy projects in Chile. Renew. Sustain. Energy Rev. 59, 583–596 (2016). https://doi.org/10.1016/j.rser.2015.12.149

    Article  Google Scholar 

  11. Toro, N., Robles, P., Jeldres, R.I.: Seabed mineral resources, an alternative for the future of renewable energy: a critical review. Ore Geol. Rev. 126, 103699 (2020). https://doi.org/10.1016/j.oregeorev.2020.103699

    Article  Google Scholar 

  12. Henry, J.: Experto en energías marinas: “La costa de Chile es un gran hotspot de energía.” In: AQUA: Acuicultura y Pesca. https://www.aqua.cl/entrevistas/henry-jeffrey-experto-energias-marinas-la-costa-chile-gran-hotspot-energia/ (2016). Accessed 7 Jan 2022

  13. Terrero González, A., Dunning, P., Howard, I., et al.: Is wave energy untapped potential? Int. J. Mech. Sci. 205 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106544

  14. Jin, S., Zheng, S., Greaves, D.: On the scalability of wave energy converters. Ocean Eng. 243, 110212 (2021). https://doi.org/10.1016/j.oceaneng.2021.110212

    Article  Google Scholar 

Download references

Acknowledgements

Iván Salazar acknowledges funding support from FIC-R BIP project 30413374-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Salazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chacana, S., Toro, N., Herrera, D., Fleming, W., Salazar, I. (2023). Wave Energy System Design of the Waraqocha Project. In: Bindhu, V., Tavares, J.M.R.S., Chen, J.IZ. (eds) Proceedings of Fifth International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4304-1_1

Download citation

Publish with us

Policies and ethics