Skip to main content

Restoration of Damaged Forest and Roles of Remote Sensing

  • Chapter
  • First Online:

Abstract

Ecological damage refers to the reduction in the value of the environment due to human activities and natural disasters such as climate change and biological disease. The area where ecological damage mainly occurs is the forest, and restoration and management of damage are more important than other ecosystems. If a damaged forest is left unattended, secondary damage such as landslides is highly likely, so it should be restored prior to other ecosystems. The intensity of forest damage is worsening worldwide, and the importance of forest restoration projects at the national level is increasing. However, it is difficult to proceed forest restoration owing to lack of data on location and features of damaged forestry or vegetation species. In the absence of data on damaged forest, policy decision such as restoration prioritization and planning becomes difficult. In this chapter, we provide an overview of the current state of research to detect damaged forest using remote sensing and of the main findings and methodological challenges therein. In addition, the use and role of remote sensing to establish legally appropriate ecological restoration including forest at the national level will be introduced. The results will suggest the importance of remote sensing for the identification and appropriate restoration approaches for damaged forests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abad-Segura E, González-Zamar MD, Vázquez-Cano E, López-Meneses E (2020) Remote sensing applied in forest management to optimize ecosystem services: advances in research. Forests 11(9):969

    Article  Google Scholar 

  • Achard F, Boschetti L, Brown S, Brady M, DeFries R, Grassi G et al (2014) A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation (No. COP20-1). GOFC-GOLD

    Google Scholar 

  • Aerts R, Honnay O (2011) Forest restoration, biodiversity and ecosystem functioning. BMC Ecol 11(1):1–10

    Article  Google Scholar 

  • Aplet GH (1998) On the nature of wildness: exploring what wilderness really protects. Denv UL Rev 76:347

    Google Scholar 

  • Axelsson A, Lindberg E, Reese H, Olsson H (2021) Tree species classification using Sentinel-2 imagery and Bayesian inference. Int J Appl Earth Obs Geoinf 100:102318

    Google Scholar 

  • Baker S, Eckerberg K (2016) Ecological restoration success: a policy analysis understanding. Restor Ecol 24(3):284–290

    Article  Google Scholar 

  • Banner A, Lynham TJ (1981) Multitemporal analysis of LANDSAT data for forest cutover mapping: a trial of two procedures

    Google Scholar 

  • Borowik T, Pettorelli N, Sönnichsen L, Jędrzejewska B (2013) Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. Eur J Wildl Res 59(5):675–682

    Article  Google Scholar 

  • Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ (2013) The consequence of tree pests and diseases for ecosystem services. Science 342(6160):1235773

    Article  CAS  Google Scholar 

  • Broge, NH, Hvidberg M, Hansen BU, Andersen HS, Nielsen AA (1997) Analyses of spectral-biophysical relationships for a wheat canopy. In: Proceedings of the 3rd international airborne remote sensing conference and exhibition, vol 2. pp 373–379

    Google Scholar 

  • Byrne GF, Crapper PF, Mayo KK (1980) Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote Sens Environ 10(3):175–184

    Article  Google Scholar 

  • Chen G, Metz MR, Rizzo DM, Dillon WW, Meentemeyer RK (2015) Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery. ISPRS J Photogramm Remote Sens 102:38–47

    Article  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54(6):535–545

    Article  Google Scholar 

  • Convention on Biological Diversity (2016) Decision adapted by the conference of the parties to the convention on biological diversity

    Google Scholar 

  • Cooke GD (2005) Ecosystem rehabilitation. Lake Reserv Manag 21(2):218–221

    Article  Google Scholar 

  • Coppin PR, Bauer ME (1996) Digital change detection in forest ecosystems with remote sensing imagery. Remote Sens Rev 13(3–4):207–234

    Article  Google Scholar 

  • Coppin P, Lambin E, Jonckheere I, Muys B (2002) Digital change detection methods in natural ecosystem monitoring: a review. In: Analysis of multi-temporal remote sensing images. pp 3–36

    Google Scholar 

  • Covington WW, Niering WA, Starkey E, Walker J (1999) Ecosystem restoration and management: scientific principles and concepts. In: Szaro RC, Johnson NC, Sexton WT, Malk AJ (eds) Ecological stewardship: a common reference for ecosystem management, vol II, pp 599–617

    Google Scholar 

  • Deng JS, Wang K, Deng YH, Qi GJ (2008) PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int J Remote Sens 29(16):4823–4838

    Article  Google Scholar 

  • Dı́az S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655

    Article  Google Scholar 

  • Douglas T (2002) Ecological restoration guidelines for British Columbia. Ministry of Water, Land and Air Protection [Ministry of Environment and Climate Change Strategy]

    Google Scholar 

  • Einzmann K, Immitzer M, Böck S, Bauer O, Schmitt A, Atzberger C (2017) Windthrow detection in European forests with very high-resolution optical data. Forests 8(1):21

    Article  Google Scholar 

  • Fang H, Frédéric B, Plummer S, Schaepman-Strub G (2019) An overview of global leaf area index (LAI): methods products validation and applications. Rev Geophys 57(3):739–799

    Article  Google Scholar 

  • Fassnacht FE, Hooman L, Krzysztof S, Modzelewska A, Lefsky M, Waser LT, Straub C, Ghosh A (2016) Review of studies on tree species classification from remotely sensed data. Remote Sens Environ 186:64–87

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations. Forestry Department (Rome) (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, Jonson J et al (2019) International principles and standards for the practice of ecological restoration. Restor Ecol 27(S1):S1–S46

    Article  Google Scholar 

  • Goetz SJ, Hansen M, Houghton RA, Walker W, Laporte N, Busch J (2015) Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ Res Lett 10(12):123001. https://doi.org/10.1088/1748-9326/10/12/123001

    Article  Google Scholar 

  • Hamdi ZM, Brandmeier M, Straub C (2019) Forest damage assessment using deep learning on high resolution remote sensing data. Remote Sens 11(17):1976

    Article  Google Scholar 

  • Heller RC (1978) Case applications of remote sensing for vegetation damage assessment. PERS 44:1159–1166

    Google Scholar 

  • Heller RC, Aldrich RC, Bailey WF (1959) An evaluation of aerial photography for detecting southern pine beetle damage

    Google Scholar 

  • Hościło A, Lewandowska A (2019) Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data. Remote Sensing 11(8):929

    Article  Google Scholar 

  • Howarth PJ, Wickware GM (1981) Procedures for change detection using Landsat digital data. Int J Remote Sens 2(3):277–291

    Article  Google Scholar 

  • Hyyppä J, Holopainen M, Olsson H (2012) Laser scanning in forests. Remote Sensing 4(10):2919–2922

    Article  Google Scholar 

  • Jahanifar K, Amirnejad H, Mojaverian M, Azadi H (2018) Land change detection and effective factors on forest land use changes: application of land change modeler and multiple linear regression. J Appl Sci Environ Manag 22(8):1269–1275

    Google Scholar 

  • Johnson RD, Kasischke ES (1998) Change vector analysis: a technique for the multispectral monitoring of land cover and condition. Int J Remote Sens 19(3):411–426

    Article  Google Scholar 

  • Kauth RJ, Thomas GS (1976) The tasselled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: LARS symposia. p 159

    Google Scholar 

  • Lagomasino D, Price RM, Whitman D, Campbell PK, Melesse A (2014) Estimating major ion and nutrient concentrations in mangrove estuaries in Everglades National Park using leaf and satellite reflectance. Remote Sens Environ 154:202–218

    Article  Google Scholar 

  • Lausch A, Herzog F (2002) Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecol Indic 2(1-2):3–15

    Article  Google Scholar 

  • Lechner AM, Foody GM, Boyd DS (2020) Applications in remote sensing to forest ecology and management. One Earth 2(5):405–412

    Article  Google Scholar 

  • Lee K, Sung HC, Seo JY, Yoo Y, Kim Y, Kook JH, Jeon SW (2020) The integration of remote sensing and field surveys to detect ecologically damaged areas for restoration in South Korea. Remote Sens 12(22):3687

    Article  Google Scholar 

  • Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56(5):395–405

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2401

    Article  Google Scholar 

  • Lunetta RS, Elvidge CD (1998) Remote sensing change detection: environment monitoring methods and applications. Ann Arbor Press, Chelsea, MI

    Google Scholar 

  • Martin A, Khater C, Mineau H, Puech S (2002) Rehabilitation ecology by revegetation. Approach and results from two Mediterranean countries. Korean J Ecol 25(1):9–17

    Article  Google Scholar 

  • Maxwell E (1976) Sensor design for monitoring vegetation canopies. Photogramm Eng Remote Sens 42:1399–1410

    Google Scholar 

  • Meroni M, Schucknecht A, Fasbender D, Rembold F, Fava F, Mauclaire M et al (2017) Remote sensing monitoring of land restoration interventions in semi-arid environments with a before–after control-impact statistical design. Int J Appl Earth Obs Geoinf 59:42–52

    Google Scholar 

  • Meyers TP (1987) Modelling the plant canopy micrometeorology with higher-order closure principles. Agric For Meteorol 41(1–2):143–163

    Article  Google Scholar 

  • Miettinen J, Stibig HJ, Achard F (2014) Remote sensing of forest degradation in Southeast Asia—aiming for a regional view through 5–30 m satellite data. Glob Ecol Conserv 2:24–36

    Article  Google Scholar 

  • Ministry of Environment (2011) Research for the systematic restoration of the damaged natural environment; Republic of Korea. Ministry of Environment, Sejong City. (In Korean)

    Google Scholar 

  • Mokroš M, Výbošťok J, Merganič J, Hollaus M, Barton I, Koreň M et al (2017) Early stage forest windthrow estimation based on unmanned aircraft system imagery. Forests 8(9):306

    Article  Google Scholar 

  • Nagendra H, Lucas R, Honrado JP, Jongman RH, Tarantino C, Adamo M, Mairota P (2013) Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol Indic 33:45–59

    Article  Google Scholar 

  • Nelson RF (1983) Detecting forest canopy change due to insect activity using Landsat MSS. Photogramm Eng Remote Sens 49(9):1303–1314

    Google Scholar 

  • Nielsen AA, Conradsen K, Simpson JJ (1998) Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sens Environ 64(1):1–19

    Article  Google Scholar 

  • Onishi M, Ise T (2021) Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci Rep 11(1):1–15

    Article  CAS  Google Scholar 

  • Persson P, Hall-Könyves K, Sjöström G, Pinzke S (1993) NOAA/A VHRR data for crop productivity estimation in Sweden. Adv Space Res 13(11):111–116

    Article  Google Scholar 

  • Pierce LL, Running SW (1988) Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology 69(6):1762–1767

    Article  Google Scholar 

  • Puletti N, Chianucci F, Castaldi C (2018) Use of Sentinel-2 for forest classification in Mediterranean environments. Ann Silvic Res 42(1):32–38. https://doi.org/10.12899/ASR-1463

    Article  Google Scholar 

  • Reed MS, Dougill AJ, Taylor MJ (2007) Integrating local and scientific knowledge for adaptation to land degradation: Kalahari rangeland management options. Land Degrad Dev 18(3):249–268

    Article  Google Scholar 

  • Reif MK, Theel HJ (2017) Remote sensing for restoration ecology: application for restoring degraded, damaged, transformed, or destroyed ecosystems. Integr Environ Assess Manag 13(4):614–630

    Article  Google Scholar 

  • Richards JA (1984) Thematic mapping from multitemporal image data using the principal components transformation. Remote Sens Environ 16(1):35–46

    Article  Google Scholar 

  • Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43(12):1541–1552

    Google Scholar 

  • Robinove CJ, Chavez PS Jr, Gehring D, Holmgren R (1981) Arid land monitoring using Landsat albedo difference images. Remote Sens Environ 11:133–156

    Article  Google Scholar 

  • Rock BN, Vogelmann JE, Williams DL, Vogelmann AF, Hoshizaki T (1986) Remote detection of forest damage: plant responses to stress may have spectral “signatures” that could be used to map, monitor, and measure forest damage. Bioscience 36(7):439–445

    Article  Google Scholar 

  • Rouse Jr JW, Haas RH, Schell JA, Deering DW (1973) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. NASA-CR-132982)

    Google Scholar 

  • Ryan SJ, Cross PC, Winnie J, Hay C, Bowers J, Getz WM (2012) The utility of normalized difference vegetation index for predicting African buffalo forage quality. J Wildl Manag 76(7):1499–1508

    Article  Google Scholar 

  • Scharsich V, Mtata K, Hauhs M, Lange H, Bogner C (2017) Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe. Remote Sens Environ 194:278–286

    Article  Google Scholar 

  • Sellers PJ, Heiser MD, Hall FG (1992) Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales. J Geophys Res Atmos 97(D17):19033–19059

    Article  Google Scholar 

  • Šimić Milas A, Rupasinghe P, Balenović I, Grosevski P (2015) Assessment of forest damage in Croatia using Landsat-8 OLI Images. South-east Eur For SEEFOR 6(2):159–169

    Google Scholar 

  • Singh A (1989) Review article digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • Stanturf JA, Palik BJ, Dumroese RK (2014) Contemporary forest restoration: a review emphasizing function. For Ecol Manag 331:292–323

    Article  Google Scholar 

  • Steiner F, Blair J, McSherry L, Guhathakurta S, Marruffo J, Holm M (2000) A watershed at a watershed: the potential for environmentally sensitive area protection in the upper San Pedro Drainage Basin (Mexico and USA). Landsc Urban Plan 49(3-4):129–148

    Article  Google Scholar 

  • Tang L, Shao G (2015) Drone remote sensing for forestry research and practices. J For Res 26(4):791–797

    Article  Google Scholar 

  • Tarazona Y, Zabala A, Pons X, Broquetas A, Nowosad J, Zurqani HA (2021) Fusing Landsat and SAR data for mapping tropical deforestation through machine learning classification and the PVts-β non-seasonal detection approach. Can J Remote Sens 47(5):677–696

    Article  Google Scholar 

  • Todd WJ (1977) Urban and regional land use change detected by using Landsat data. J Res US Geol Surv 5(5):529–534. https://pubs.er.usgs.gov/publication/70112341

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Wang L, Jia M, Yin D, Tian J (2019) A review of remote sensing for mangrove forests: 1956–2018. Remote Sens Environ 231:111223

    Article  Google Scholar 

  • Weaver PL, Medina E, Pool D, Dugger K, Gonzales-Liboy J, Cuevas E (1986) Ecological observations in the dwarf cloud forest of the Luquillo Mountains in Puerto Rico. Biotropica 18:79–85

    Article  Google Scholar 

  • Wessel M, Brandmeier M, Tiede D (2018) Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on Sentinel-2 data. Remote Sens 10(9):1419

    Article  Google Scholar 

  • Wiegand T, Naves J, Garbulsky MF, Fernández N (2008) Animal habitat quality and ecosystem functioning: exploring seasonal patterns using NDVI. Ecol Monogr 78(1):87–103

    Article  Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349(6250):832–836

    Article  CAS  Google Scholar 

  • Wu J, Li H, Wan H, Wang Y, Sun C, Zhou H (2021) Analyzing the relationship between animal diversity and the remote sensing vegetation parameters: the case of Xinjiang, China. Sustainability 13(17):9897

    Article  Google Scholar 

  • Yu R, Luo Y, Zhou Q, Zhang X, Wu D, Ren L (2021) Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For Ecol Manag 497:119493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungil Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, K., Ryu, J., Kim, S.H. (2022). Restoration of Damaged Forest and Roles of Remote Sensing. In: Suratman, M.N. (eds) Concepts and Applications of Remote Sensing in Forestry . Springer, Singapore. https://doi.org/10.1007/978-981-19-4200-6_19

Download citation

Publish with us

Policies and ethics