Skip to main content

IoT-based Precision Agriculture: A Review

  • Conference paper
  • First Online:
Proceedings of Emerging Trends and Technologies on Intelligent Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1414))

Abstract

Agriculture is one of the important economic sectors in India, constitutes 20% of the gross domestic product (GDP) of the country. The use of the Internet of Things (IoT) and unmanned aerial vehicles (UAV) in agriculture helps farmers improve their productivity through better prediction, real-time monitoring, and efficient management of crops. This review aims to highlight the role of UAVs in crop health monitoring, various critical parameters, wireless sensor technologies (WSNs), and platforms used in IoT-based precision agriculture (PA), which significantly improves productivity when compared to manual farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, R., Singh, H., & Raghubanshi, A. S. (2019). Challenges and opportunities for agricultural sustainability in changing climate scenarios: A perspective on Indian agriculture. Tropical Ecology, 60(2), 167–185.

    Google Scholar 

  2. Mintert, J. R., Widmar, D., Langemeier, M., Boehlje, M., & Erickson, B. (2016). The challenges of precision agriculture: Is big data the answer? Technical report.

    Google Scholar 

  3. Ma, Y. W., & Chen, J. L. (2018). Toward intelligent agriculture service platform with lora-based wireless sensor network. In 2018 IEEE International Conference on Applied System Invention (ICASI) (pp. 204–207). IEEE.

    Google Scholar 

  4. Shafi, U., Mumtaz, R., Iqbal, N., Zaidi, S. M. H., Zaidi, S. A. R., Hussain, I., & Mahmood, Z. (2020). A multi-modal approach for crop health mapping using low altitude remote sensing, internet of things (iot) and machine learning. IEEE Access, 8, 112708–112724.

    Article  Google Scholar 

  5. Bah, M. D., Dericquebourg, E., Hafiane, A., & Canals, R. (2018). Deep learning based classification system for identifying weeds using high-resolution UAV imagery. In Science and Information Conference (pp. 176–187). Springer.

    Google Scholar 

  6. Karimah, S. A., Rakhmatsyah, A., & Suwastika, N. A. (2019). Smart pot implementation using fuzzy logic. Journal of Physics: Conference Series, 1192, 012058. IOP Publishing.

    Google Scholar 

  7. Inoue, Y., & Yokoyama, M. (2019). Drone-based optical, thermal, and 3d sensing for diagnostic information in smart farming–systems and algorithms. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, (pp. 7266–7269). IEEE.

    Google Scholar 

  8. Guo, Y., Jia, X., Paull, D., Zhang, J., Farooq, A., Chen, X., & Islam, M. N. (2019). A drone-based sensing system to support satellite image analysis for rice farm mapping. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 9376–9379). IEEE.

    Google Scholar 

  9. Lee, I., & Lee, K. (2015). The internet of things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.

    Article  Google Scholar 

  10. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  11. Tyagi, K., Karmarkar, A., Kaur, S., Kulkarni, S., & Das, R. (2020). Crop health monitoring system. In 2020 International Conference for Emerging Technology (INCET) (pp. 1–5). IEEE.

    Google Scholar 

  12. Estrada-López, J. J., Castillo-Atoche, A. A., Vázquez-Castillo, J., & Sánchez-Sinencio, E. (2018). Smart soil parameters estimation system using an autonomous wireless sensor network with dynamic power management strategy. IEEE Sensors Journal, 18(21), 8913–8923.

    Google Scholar 

  13. Barik, S., & Naz, S. (2021). Smart agriculture using wireless sensor monitoring network powered by solar energy. In 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 983–988). IEEE.

    Google Scholar 

  14. Saha, A. K., Saha, J., Ray, R., Sircar, S., Dutta, S., Chattopadhyay, S. P., & Saha, H. N. (2018). Iot-based drone for improvement of crop quality in agricultural field. In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 612–615). IEEE.

    Google Scholar 

  15. Shafi, U., Mumtaz, R., Hassan, S. A., Zaidi, S. A. R., Akhtar, A., & Malik, M. M. (2020). Crop health monitoring using iot-enabled precision agriculture. In IoT Architectures, Models, and Platforms for Smart City Applications (pp. 134–154). IGI Global.

    Google Scholar 

  16. Uddin, M. A., Mansour, A., Le Jeune, D., Ayaz, M., & Aggoune, E. M. (2018). UAV-assisted dynamic clustering of wireless sensor networks for crop health monitoring. Sensors, 18(2), 555.

    Google Scholar 

  17. Bhuvaneshwari, C., Saranyadevi, G., Vani, R., & Manjunathan, A. (2021). Development of high yield farming using iot based UAV. In IOP Conference Series: Materials Science and Engineering, vol. 1055, p. 012007. IOP Publishing.

    Google Scholar 

  18. Kovalskyy, V., & Yang, X. (2020). Assessment of multiplatform satellite image frequency for crop health monitoring. In EGU General Assembly Conference Abstracts, p. 12328.

    Google Scholar 

  19. Kitpo, N., & Inoue, M. (2018). Early rice disease detection and position mapping system using drone and iot architecture. In 2018 12th South East Asian Technical University Consortium (SEATUC) (vol.  1, pp. 1–5). IEEE.

    Google Scholar 

  20. Yashwanth, M., Chandra, M. L., Pallavi, K., Showkat, D., & Satish Kumar, P. (2020). Agriculture automation using deep learning methods implemented using keras. In 2020 IEEE International Conference for Innovation in Technology (INOCON), pp. 1–6. IEEE.

    Google Scholar 

  21. Raghavendra, C. S., Sivalingam, K. M., & Znati, T. (2006). Wireless sensor networks. Springer.

    Google Scholar 

  22. Gao, G., Jia, Y., & Xiao, K. (2018). An IoT-based multi-sensor ecological shared farmland management system. International Journal of Online Engineering, 14(3).

    Google Scholar 

  23. Bychkovskiy, V., Megerian, S., Estrin, D., & Potkonjak, M. (2003). A collaborative approach to in-place sensor calibration. In Information processing in sensor networks (pp. 301–316). Springer.

    Google Scholar 

  24. Azimi Mahmud, M. S., Buyamin, S., Mokji, M. M., & Zainal Abidin, M. S. (2018). Internet of things based smart environmental monitoring for mushroom cultivation. Indonesian Journal of Electrical Engineering and Computer Science, 10(3), 847–852.

    Google Scholar 

  25. Codeluppi, G., Cilfone, A., Davoli, L., & Ferrari, G. (2020). Lorafarm: A lorawan-based smart farming modular iot architecture. Sensors, 20(7), 2028.

    Article  Google Scholar 

  26. Trilles, S., González-Pérez, A., & Huerta, J. (2018). A comprehensive iot node proposal using open hardware: A smart farming use case to monitor vineyards. Electronics, 7(12), 419.

    Google Scholar 

  27. Syafarinda, Y., Akhadin, F., Fitri, Z. E., Widiawan, B., Rosdiana, E., et al. (2018). The precision agriculture based on wireless sensor network with mqtt protocol. In IOP Conference Series: Earth and Environmental Science, (vol. 207, p. 012059). IOP Publishing.

    Google Scholar 

  28. Rivas-Sánchez, Y. A., Moreno-Pérez, M. F., & Roldán-Cañas, J. (2019). Environment control with low-cost microcontrollers and microprocessors: Application for green walls. Sustainability, 11(3), 782.

    Google Scholar 

  29. Erazo-Rodas, M., Sandoval-Moreno, M., Muñoz-Romero, S., Huerta, M., Rivas-Lalaleo, D., Naranjo, C., & Rojo-Álvarez, J. (2018). Multiparametric monitoring in equatorian tomato greenhouses (i): Wireless sensor network benchmarking. Sensors, 18(8), 2555.

    Google Scholar 

  30. Sabo, A., & Qaisar, S. M. (2018). The event-driven power efficient wireless sensor nodes for monitoring of insects and health of plants. In 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP) (pp. 478–483). IEEE.

    Google Scholar 

  31. El-Magrous, A. A., Sternhagen, J. D., Hatfield, G., & Qiao, Q. (2019). Internet of things based weather-soil sensor station for precision agriculture. In 2019 IEEE International Conference on Electro Information Technology (EIT) (pp. 092–097). IEEE.

    Google Scholar 

  32. Hou, R., Li, T., Qiang, F., Liu, D., Li, M., Zhou, Z., Yan, J., & Zhang, S. (2020). Research on the distribution of soil water, heat, salt and their response mechanisms under freezing conditions. Soil and Tillage Research,196, 104486.

    Google Scholar 

  33. Wei, H., Liu, Y., Xiang, H., Zhang, J., Li, S., & Yang, J. (2020). Soil PH responses to simulated acid rain leaching in three agricultural soils. Sustainability, 12(1), 280.

    Article  Google Scholar 

  34. Bhattacharyya, S., Sarkar, P., Sarkar, S., Sinha, A., & Chanda, S. (2020). Prototype model for controlling of soil moisture and PH in smart farming system. In Computational Advancement in Communication Circuits and Systems (pp. 405–411.) Springer.

    Google Scholar 

  35. Bhatnagar, V., & Chandra, R. (2020). Iot-based soil health monitoring and recommendation system. In Internet of Things and Analytics for Agriculture, Volume 2, pp. 1–21. Springer.

    Google Scholar 

  36. Jaiswal, A., Jindal, R., & Verma, A. K. (2020). Crop health monitoring system using IoT. International Research Journal Engineering Technology, 2485–2489.

    Google Scholar 

  37. Huang, Y., & Wang, S. (2017). Soil moisture monitoring system based on ziggbee wireless sensor network. In 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC) (pp. 739–742). IEEE.

    Google Scholar 

  38. Quiroz, R. A. A., Guidotti, F. P., & Bedoya, A. E. (2019). A method for automatic identification of crop lines in drone images from a mango tree plantation using segmentation over ycrcb color space and hough transform. In 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1–5). IEEE.

    Google Scholar 

  39. De Oca, A. M., Arreola, L., Flores, A., Sanchez, J., & Flores, G. (2018). Low-cost multispectral imaging system for crop monitoring. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 443–451). IEEE.

    Google Scholar 

  40. Ya, N. N. C., Lee, L. S., Ismail, M. R., Razali, S. M., Roslin, N. A., & Omar, M. H. (2019). Development of rice growth map using the advanced remote sensing techniques. In 2019 International Conference on Computer and Drone Applications (IConDA) (pp. 23–28). IEEE.

    Google Scholar 

  41. Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.

    Google Scholar 

  42. Gonzalez, R. C. (2009). Digital image processing. Pearson Education India.

    Google Scholar 

  43. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.

    Google Scholar 

Download references

Acknowledgements

We extend our sincere thanks and gratitude to the Centre for Development of Advanced Computing (C-DAC), Patna, for providing the administrative and technical support to the IoT lab for conducting this research work. We would like to thank Mr. Kunal Abhishek (Joint Director, C-DAC, Patna) for his inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Diya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diya, V.A., Nandan, P., Dhote, R.R. (2023). IoT-based Precision Agriculture: A Review. In: Noor, A., Saroha, K., Pricop, E., Sen, A., Trivedi, G. (eds) Proceedings of Emerging Trends and Technologies on Intelligent Systems. Advances in Intelligent Systems and Computing, vol 1414. Springer, Singapore. https://doi.org/10.1007/978-981-19-4182-5_30

Download citation

Publish with us

Policies and ethics