Skip to main content

Solid Electrolytes Based on Rare Earth Oxides and Fluorides

  • Chapter
  • First Online:
Theory and Application of Rare Earth Materials
  • 383 Accesses

Abstract

Solid electrolytes are solid-state ionic conductors and belong to a branch of defect physics involving physics and chemistry. Morphologically, they include single crystal, polycrystalline, sintered body, and thin film electrolytes. Unlike fast ionic conductors, solid electrolytes are ordinary solid-state ionic conductors with low ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Delcet J, Heus RJ, Egan J (1978) Electronic conductivity in solid CaF2 at high temperature. J Electrochem Soc 125(5):755

    Article  CAS  Google Scholar 

  • Du T, Han QY, Wang CZ (1995) Physical chemistry of rare earth alkali soil and its application in materials. Science Press, Beijing

    Google Scholar 

  • Fedorov PP, Turkina TM, Sobolev BP (1982) Ionic conductivity in the single crystals of non-stoichiometric fluorite phases M1−xRxF2+x (M=Ca, Sr, Ba; R=Y, La-Lu). Solid State Ionics 6:331

    Article  CAS  Google Scholar 

  • Fischer WA, Janke D (1991) Metallurgical electrochemistry (trans: Wu XF). Northeast Institute of Technology Press, Shenyang

    Google Scholar 

  • Frenkel J (1930) On the Electrical Resistance of Contacts between Solid Conductors. Phys Rev 36:1604

    Google Scholar 

  • Gao L, Yan DS, Guo JK (1988) The effect of ZrO2 particle size on phase change toughening in Y-TZP ceramics. Chin Sci 1A:95

    Google Scholar 

  • Hagenmuller P (1984) Solid electrolytes, general principles, characteristics, materials and applications (trans: Chen LQ et al). Science Press, Beijing

    Google Scholar 

  • Hildrum R, Brustad M, Wang CZ et al (1994) Thermodynamic properties of doped lanthanum manganites. Mater Res Bull 29(8):851

    Article  CAS  Google Scholar 

  • Huang K, Wang CZ, Xu XG (1992) Activity of Bi2O3 in Bi2O3-Y2O3 oxygen ion conductor. J Solid State Chem 98:206

    Article  CAS  Google Scholar 

  • Janke D, Fischer WA (1977) Physikalisch-chemische eigenschaften oxid keramischer festektrolyte. Arch Eisenhüttenwes 48(5):255

    Article  CAS  Google Scholar 

  • Japan Steel Sensors Commission (1989) A new development of steel sensors—solid electronic sensors as the center. Japan Society for the Promotion Science, the 19th committee steel sensor subcommittee, Tokyo, pp 4151–4153

    Google Scholar 

  • Lange FF (1982) Transformation toughening (Part 1–5). J Mater Sci 17:225

    Article  CAS  Google Scholar 

  • Masaki T (1986) Mechanical properties of Y2O3-stabilized tetragonal ZrO2 polycrystals after ageing at high temperature. J Am Ceram Soc 69(7):519

    Article  CAS  Google Scholar 

  • Meng GY, Zhou M, Peng DK (1986) A new phenomenon—the inductive impedance in Bi2O3 based oxygen ionic conductors. Solid State Ionics 18–19:756

    Article  Google Scholar 

  • Mori T, Drennan J, Lee JH et al (2002) Improving the ionic conductivity of yttria-stabilised zirconia electrolyte materials. Solid State Ionics 154–155:529–533

    Article  Google Scholar 

  • Pastor RC, Pastor AC, Miller KT (1974) Congruently melting compounds of CaF2·rcRF3: Part II. Mater Res Bull 9:1253–1259

    Article  CAS  Google Scholar 

  • Porter DL, Heuer AH (1977) Mechanisms of toughening partially stabilized zirconia (PSZ). J Am Ceram Soc 60(3–4):183

    Article  CAS  Google Scholar 

  • Rapp RA, Shores DA (1970) Solid electrolyte galvanic cells. In: Rapp RA (ed) Physicochemical measurements in metals research. Part II. Interscience Publishers, New York, London, Sydney, Toronto, pp 124–186

    Google Scholar 

  • Reau JM, Lucat C, Campet G (1976) Application du tracé des diagrammes d’impédance complexe à la détermination de la conductivité ionique des solutions solides Ca1−xYxF2+x: Corrélations entre propriétés electriques et structurales. J Solid State Chem 17:123

    Article  CAS  Google Scholar 

  • Schottky W (1935) Z Physik Chem B29:353

    Google Scholar 

  • Sheng XM, Xu J (1985) Toughening effect of fine dispersed ZrO2 and its application in Si3N4. J Silicate 13(3):364

    CAS  Google Scholar 

  • Sher A, Solomon R, Lee K (1966) Transport properties of LaF3. Phys Rev 144(2):593

    Article  CAS  Google Scholar 

  • Sobolev BP, Fedorov PP, Seiranian KB et al (1976) On the problem of polymorphism and fusion of lanthanide trifluorides. II. Interaction of LnF3 with MF2 (M = Ca, Sr, Ba), change in structural type in the LnF3 series, and thermal characteristics. J Solid State Chem 17:201

    Google Scholar 

  • Subbarao EC (1980) Solid electrolytes and their applications. Plenum Press, New York

    Book  Google Scholar 

  • Takahashi T, Iwahara H, Arao T (1975) High oxide ion conduction in sintered oxides of the system Bi2O3-Y2O3. J Appl Electrochem 5:187

    Article  CAS  Google Scholar 

  • Takahashi T, Iwahara H, Arao T (1976) Electrical conduction in the sintered oxides of the system Bi2O3-BaO. J Solid State Chem 16:317

    Article  CAS  Google Scholar 

  • Wagner C, Schottky W (1930) Z phys Chem B11:163

    Google Scholar 

  • Wang CZ (2004) Study on thermodynamics of chemical sensors and materials using solid electrolytes e. m. f. method. In: Proceedings of the 12th China conference on solid-state ionology. Rare Earth, vol 10, p 1

    Google Scholar 

  • Wang CZ, Xu XG (1984) Ion conductance and electron conductance of Bi2O3-Y2O3 series high oxygen ion conductor. J Phys 33(2):221

    CAS  Google Scholar 

  • Watanabe A, Kikuchi T (1986) Cubic-hexagonal transformation of yttria-stabilized Σ-bismuth sesquioxide, Bi2–2xY2xO3 (x = 0.215 − 0.235). Solid State Ionics 21:287

    Google Scholar 

  • Wang P, Wang CZ (1996) Study on the activity of La sensor in the determination La liquid aluminum solidification. J Phys Chem 12(3):272–275

    CAS  Google Scholar 

  • Wang P, Wang CZ, Xu XG (1997) The application of a lanthanum sensor in the investigation of lanthanum activity in carbon saturated iron liquid solution and its solidification. Solid State Ionics 99:153

    Article  CAS  Google Scholar 

  • Xiao LS, Li GQ, Sui ZT, Wang CZ (1994) Study on impedance spectrum of solid electrolyte La(1–x)CaxF(3–x). J Silicate 22(6):553–558

    CAS  Google Scholar 

  • Xiao LS, Sui ZT, Wang CZ (1993) Study of dissolved state La activity in Al solution. Acta Metall Sin 29(8):49–54

    Google Scholar 

  • Xiao LS, Yu HL, Wang CZ et al (1994) Study on LaNi5 and CeNi5 standard free energy of formation. J Chin Rare Earth Soc 12(1):15

    CAS  Google Scholar 

  • Xu XG, Wang CZ, Li GG et al (1992) In: The sixth Japan-China symposium on science and technology of iron and steel, Chiba, Japan, Japan Iron Steel Association, pp 26–31

    Google Scholar 

  • Suzuki Y (1996) Activation energy for electrical conduction of Y2O3-stabilized ZrO2 containing 8 mol% Y2O3. Solid State Ionics 91:239

    Article  CAS  Google Scholar 

  • Zou KY, Wang CZ, Zhao NR (1995) Lanthanum sensor and activity of lanthanum in carbon saturated iron. Acta Metall Sin 31(17):195–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, C. (2023). Solid Electrolytes Based on Rare Earth Oxides and Fluorides. In: Theory and Application of Rare Earth Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4178-8_6

Download citation

Publish with us

Policies and ethics