Skip to main content

Role of Plant Growth-Promoting Bacteria in Rainfed and Irrigated Crops

  • Chapter
  • First Online:
Plant Growth Promoting Microorganisms of Arid Region

Abstract

Water stress and soil salinity are the two main serious issues in rainfed and irrigated crops worldwide. Globally, India is at number one position in rainfed agriculture in terms of area as well as value of the produce. Due to water stress, rainfed crops are prone to breakdown during monsoon in view of rainfall and soil variability, delay in sowing, and diversity in crop management practices, leading to partial or complete failure of the crops. Additionally, irrigated crops suffer from salinity stress due to the deposition of high amount of soluble salts from the groundwater used for irrigation leading to poor crop yield. The cultivation of high-value crops requiring exhaustive utilization of chemical fertilizers, pesticides, and hybrid seeds has made it difficult to manage the resources, aggravating the problems of rainfed and irrigated agriculture. For feeding ever-increasing world’s population, there is a critical need to increase productivity of rainfed and irrigated cropping systems. Plant growth-promoting microorganisms with the innate ability of water and salinity stress tolerance have the potential to be used as safe and cost-effective alternatives for enhancing crop productivity in rainfed and irrigated agriculture. Many of these microorganisms have been reported to mitigate various environmental stresses in plants by different mechanisms. This chapter highlights the potential of plant growth-promoting bacteria in enhancing the crop productivity in rainfed and irrigated agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abobatta WF (2019) Drought adaptive mechanisms of plants–a review. Adv Agric Environ Sci 2(1):62–65

    Google Scholar 

  • Ahanger MA, Morad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R (2016) Plant growth under drought stress: significance of mineral nutrients. Water stress and crop plants: a sustainable approach. 2:649–668

    Google Scholar 

  • Al-Yasi H, Attia H, Alamer K, Hassan F, Ali E, Elshazly S, Siddique KH, Hessini K (2020) Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in damask rose. Plant Physiol Biochem 150:133–139

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.x

    Article  CAS  Google Scholar 

  • Balla K, Rakszegi RM, Li Z, Bekes F, Bencze S, Veisz O (2011) Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci 29:117–128

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413. https://doi.org/10.1007/s00374-008-0344-9

    Article  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894. https://doi.org/10.1016/j.jplph.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM 196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569

    Article  CAS  PubMed  Google Scholar 

  • Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45(1):12–19

    Article  CAS  Google Scholar 

  • Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6:1241

    Article  PubMed  PubMed Central  Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90. https://doi.org/10.1071/Fp11173

    Article  PubMed  Google Scholar 

  • Deshmukh RK, Nguyen HT, Belanger RR (2017) Aquaporins: dynamic role and regulation. Front Plant Sci 15(8):1420

    Article  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379

    Article  CAS  Google Scholar 

  • Dubey RS (2018) Photosynthesis in plants under stressful conditions. In: Handbook of photosynthesis. CRC Press, pp 629–649

    Chapter  Google Scholar 

  • Egamberdieva D, Jabborova D, Hashem A (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci 22:773–779. https://doi.org/10.1016/j.sjbs.2015.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erice G, Ruíz-Lozano JM, Zamarreño ÁM, García-Mina JM, Aroca R (2017) Transcriptomic analysis reveals the importance of JA-Ile turnover in the response of Arabidopsis plants to plant growth promoting rhizobacteria and salinity. Environ Exp Bot 143:10–19. https://doi.org/10.1016/j.envexpbot.2017.08.006

    Article  CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  • Fathi A, Tari DB (2016) Effect of drought stress and its mechanism in plants. Int J Life Sci 10(1):1–6

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410(1–2):335–356

    Article  CAS  Google Scholar 

  • Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 21:57–67

    Article  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22(14):10375–10394

    Article  CAS  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82(2):1–22

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

  • Hasanuzzaman M, Bhuyan MH, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Tabassum B, Abd-Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manage 201:152–166

    Article  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20:201–207. https://doi.org/10.1007/s12298-014-0224-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge TF, António C (2018) Plant metabolomics in a changing world: metabolite responses to abiotic stress combinations. In: Andjelkovic V (ed) Plant abiotic stress responses climate change. IntechOpen, London, pp 23–26

    Google Scholar 

  • Joshi V, Joshi M, Silwal D, Noonan K, Rodriguez S, Penalosa A (2019) Systematized biosynthesis and catabolism regulate citrulline accumulation in watermelon. Phytochemistry 162:129–140

    Article  CAS  PubMed  Google Scholar 

  • Kamara AY, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of water deficit on growth, yield and yield components of some maize genotypes. J Agric Sci 141:43–50

    Article  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kannepalli A, Davranov K, Narimanov A, Enakiev Y, Syed AA, Elgorban AM, Bahkali AH, Wirth S, Sayyed RZ, Gafur A (2021) Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Sci Rep 11:22081

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan A, Wang L, Ali S, Tung SA, Hafeez A, Yang G (2017a) Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Res 214:164–174

    Article  Google Scholar 

  • Khan A, Zhao XQ, Javed MT, Khan KS, Bano A, Shen RF, Masood S (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129. https://doi.org/10.1016/j.envexpbot.2015.12.011

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang SM, Kim YH, Yun BW, Al-Rawahi A (2017b) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H, Sayyed RZ, Shafaqat A, Ilyas N (2020) 24-Epibrassinolide regulated antioxidants and osmolyte defense and endogenous hormones in two wheat varieties under drought stress. Physiologia Planta 1-11. https://doi.org/10.1111/ppl.13237

  • Khan N, Bano A (2019) Growth and yield of field crops grown under drought stress condition is influenced by the application of PGPR. In: Field crops: sustainable management by PGPR. Springer, Cham, pp 337–349

    Chapter  Google Scholar 

  • Kim JY, Mahe A, Brangeon J, Prioul JL (2000) A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol 124:71–84. https://doi.org/10.1104/pp.124.1.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, González EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroides and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145(2):539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci 11:1750

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazar Mater 320:36–44

    Article  CAS  Google Scholar 

  • Machado RM, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30

    Article  Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232(2):533–543

    Article  CAS  PubMed  Google Scholar 

  • Mazahery-Laghab H, Nouri F, Abianeh HZ (2003) Effects of the reduction of drought stress using supplementary irrigation for sunflower (Helianthus annuus) in dry farming conditions. Pajouheshva Sazandegi Agron Hortic 59:81–86

    Google Scholar 

  • Mehmood K, Arshad M, Ali GM, Shah SH, Zia MA, Qureshi AA, Qureshi R (2020) Drought stress tolerance in transgenic wheat conferred by expression of a dehydrogenase-responsive element –binding 1A gene. Appl Ecol Environ Res 18(2):1999–2024

    Article  Google Scholar 

  • Najafi S, Nazari Nasi H, Tuncturk R, Tuncturk M, Sayyed RZ, Amirnia R (2021) Biofertilizer application enhances drought stress tolerance and alters the antioxidant enzymes in medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca). Horticulturae 7(12):588

    Article  Google Scholar 

  • Nam NH, Chauhan YS, Johansen C (2001) Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J Agric Sci 136:179–189. https://doi.org/10.1017/S0021859601008607

    Article  Google Scholar 

  • Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbial 58(12):1009–1022

    Article  CAS  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Kaur S, Singh S, Upadhyaya HD (2006) Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: effects on accumulation of seed reserves and yield. J Sci Food Agric 86:2076–2082. https://doi.org/10.1002/jsfa.2574

    Article  CAS  Google Scholar 

  • Niu SQ, Li HR, Paré PW, Aziz M, Wang SM, Shi H, Li J, Han QQ, Guo SQ, Li J, Guo Q (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407(1):217–230

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Samuel C, Fatai A, Magaji U, Kareem I, Kamarudin ZS, Muhammad II, Kolapo K (2019) Drought resistance in rice from conventional to molecular breeding: a review. Int J Mol Sci 20(14):3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’tomato plants. J Appl Microbiol 117:766–773. https://doi.org/10.1111/jam.12563

    Article  CAS  PubMed  Google Scholar 

  • Panwar M, Tewari R, Nayyar H (2016) Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of mung bean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiol Mol Biol Plants 22:445–459. https://doi.org/10.1007/s12298-016-0376-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296(1):52–59

    Article  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Rolando JL, Ramírez DA, Yactayo W, Monneveux P, Quiroz R (2015) Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environ Exp Bot 110:27–35

    Article  Google Scholar 

  • Sagar A, Rai S, Ilyas N, Sayyed RZ, Al-Turki AI, Enshasy HAE, Simarmata T (2022) Halotolerant rhizobacteria for salinity stress mitigation: diversity, mechanism and molecular approaches. Sustainability 14:490

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) A novel Azotobacter vinellandii (SRI Az 3) functions in salinity stress tolerance in rice. Plant Signal Behav 9:511–523. https://doi.org/10.4161/psb.29377

    Article  CAS  Google Scholar 

  • Samarah NH, Mullen RE, Cianzio SR, Scott P (2006) Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Sci 46:2141–2150

    Article  CAS  Google Scholar 

  • Sandhya VS, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    Article  CAS  Google Scholar 

  • Saradadevi R, Palta JA, Siddique KH (2017) ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. Front Plant Sci 8:1251

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharf BE, Hynes MF, Alexandre GM (2016) Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol Biol 90(6):549–559

    Article  CAS  PubMed  Google Scholar 

  • Schroeder EA, Raimundo N, Shadel GS (2013) Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab 17(6):954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwember AR, Schulze J, Del Pozo A, Cabeza RA (2019) Regulation of symbiotic nitrogen fixation in legume root nodules. Plan Theory 8(9):333

    CAS  Google Scholar 

  • Sebastiana M, Duarte B, Monteiro F, Malhó R, Caçador I, Matos AR (2019) The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. Plant Physiol Biochem 144:157–165

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32(4):237–249

    Article  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GP, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomol Ther 9(7):285

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2019) Protein synthesis by plants under stressful conditions. In: Handbook of plant and crop stress, 4th edn. CRC Press, pp 405–449

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 2:123–131

    Article  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth promoting rhizobacteria. J Plant Growth Regul 31:195–206. https://doi.org/10.1007/s00344-011-9231-y

    Article  CAS  Google Scholar 

  • Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J (2015) Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One 10(3):e0115349

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Singh AK, Singh PP, Kumar A (2018) Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agric Ecosyst Environ 267:129–140

    Article  CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals Bot 115(3):433–447

    Article  CAS  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AM, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30. https://doi.org/10.1016/j.apsoil.2015.04.017

    Article  Google Scholar 

  • Tekle AT, Alemu MA (2016) Drought tolerance mechanisms in field crops. W J Biol Med Sci 3(2):15–39

    Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:193–231. https://doi.org/10.1016/S0065-2113(01)71015-2

    Article  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) O s SUV 3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR 64). Plant J 76(1):115–127

    CAS  PubMed  Google Scholar 

  • Ullah H, Santiago-Arenas R, Ferdous Z, Attia A, Datta A (2019) Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: a review. Adv Agron 156:109–157

    Article  Google Scholar 

  • Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313. https://doi.org/10.1139/cjm2014-0668

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17(1):288–293

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, Kaur R (2019) Culturable stress-tolerant plant growth-promoting bacterial endophytes associated with Adhatoda vasica. J Soil Sci Plant Nutr 19(2):290–298

    Article  CAS  Google Scholar 

  • Wang L, Zhang X, Ma Y, Qing Y, Wang H, Huang X (2019) The highly drought-tolerant pitaya (Hylocereus undatus) is a non-facultative CAM plant under both well-watered and drought conditions. J Hortic Sci Biotechnol 94(5):643–652

    Article  Google Scholar 

  • Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A, Li Y (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Hou H, Singer SD, Yan X, Guo R, Wang X (2014) The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana. PCTOC 118(3):571–582

    Article  CAS  Google Scholar 

  • Yang YY, Kim JG (2016) The optimal balance between sexual and asexual reproduction in variable environments: a systematic review. J Ecol Environ 40(1):1–8

    Google Scholar 

  • Zhang F, Zou YN, Wu QS, Kuča K (2020) Arbuscular mycorrhizae modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ Exp Bot 171:103926

    Article  CAS  Google Scholar 

  • Zhou N, Zhao S, Tian CY (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx091

  • Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A (2021) Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242:126626

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Kasana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vyas, P., Rana, A.K., Kasana, R.C. (2023). Role of Plant Growth-Promoting Bacteria in Rainfed and Irrigated Crops. In: Mawar, R., Sayyed, R.Z., Sharma, S.K., Sattiraju, K.S. (eds) Plant Growth Promoting Microorganisms of Arid Region. Springer, Singapore. https://doi.org/10.1007/978-981-19-4124-5_3

Download citation

Publish with us

Policies and ethics