Skip to main content

Prospect of Chicken Litter as a Source of Sustainable Energy

  • Chapter
  • First Online:
Manure Technology and Sustainable Development

Abstract

Chicken (poultry) litter is a heterogeneous substance usually consisting of poultry droppings, feathers, spilled feed, and bedding materials used in poultry farming. Additionally, it contains water, dead skin, microbiota, and feed scraps. The steady growth of chicken production has led to exponential growth in chicken litter generation. The substances are primarily disposed of in the environment, used as organic fertilizer, or fed to ruminants. However, indiscriminate disposal and improper elimination of chicken litter into the surrounding is causing significant environmental and social damages. This growing problem can be ameliorated by converting chicken litter into biofuel via thermochemical processes. This way, chicken litter can potentially be used for producing electricity, heat, biochar, and fuel with low particle emission. While there are numerous processes for efficient biomass conversion, chicken litter does not have any standard composition, as a result, it is challenging to optimize the operating conditions. It is essential that a chicken litter to biofuel conversion systems is efficient and well controlled to offer economically feasible energy generation. Hence, the purpose of this chapter is to analyze the physio-chemical characteristics of chicken litter and evaluate its potential for multi-utilization as biofuel and organic fertilizer. Moreover, the chapter discusses the available and advanced process of thermochemical energetic conversion of chicken litter to assess its potential as a sustainable renewable source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\({\rho }_{t}\) :

Tap bulk density (kg/m3)

\({m}_{c}\) :

Sample mass in the cylinder (kg)

\({V}_{t}\) :

Sample volume after finishing the tapping (m3)

\({d}_{gw}\) :

Median size of particles by geometric mean diameter (mm)

\({S}_{log}\) :

Geometric standard deviation of log-normal distribution by mass in ten bases logarithm (dimensionless)

\({S}_{gw}\) :

Geometric standard deviation of particle diameter by mass (mm)

\({W}_{i}\) :

Mass of sample on ith sieve (g)

\(n\) :

Total number of sieves plus one pan

\(\overline{{d }_{i}}\) :

Aperture size of the ith sieve (mm)

\({\rho }_{p}\) :

Particle density (m3)

\({m}_{p}\) :

Mass of the sample cell (kg)

\({V}_{p}\) :

Volume of the sample (m3)

\(\varepsilon\) :

Porosity

\({\rho }_{b}\) :

Bulk density (m3)

\({H}_{r}\) :

Hausner ratio

\({C}_{m}\) :

Mechanical Compressibility

\({V}_{i}\) :

Initial volume (m3)

\({V}_{f}\) :

Final volume (m3)

\({\rho }_{bi}\) :

Bulk density at initial point (kg/m3)

\({\rho }_{bf}\) :

Bulk density at final point (kg/m3)

References

  1. Bolan NS et al (2010) Uses and management of poultry litter. World’s Poult Sci J 66(4):673–698. Cambridge University Press on Behalf of World’s Poultry Science Association

    Article  Google Scholar 

  2. The Economist (2019) How chicken became the rich world’s most popular meat—Chickenomics. The Economist, January 19–25. https://www.economist.com/international/2019/01/19/how-chicken-became-the-rich-worlds-most-popular-meat

  3. Problems W (2013) Statistics: broiler chickens

    Google Scholar 

  4. National Chicken Council (2019) Broiler chicken industry key facts, p 1. https://www.nationalchickencouncil.org/about-the-industry/statistics/broiler-chicken-industry-key-facts/

  5. Whitely N, Ozao R, Artiaga R et al (2006) Multi-utilization of chicken litter as biomass source. Part I. Combustion. Energy & Fuels 20(6):2660–2665. ACS Publications

    Article  CAS  Google Scholar 

  6. Barrington S et al (2002) Effect of carbon source on compost nitrogen and carbon losses. Bioresour Technol 83(3):189–194. Elsevier

    Article  CAS  Google Scholar 

  7. Tiquia SM, Tam NFY (1998) Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresour Technol 65(1–2):43–49. Elsevier

    Article  CAS  Google Scholar 

  8. Brake JD (1992) A practical guide for composting poultry litter. Mississipi State University

    Google Scholar 

  9. Chang C, Janzen HH (1996) Long-term fate of nitrogen from annual feedlot manure applications. J Environ Quality 25(4):785–790. American Society of Agronomy, Crop Science Society of America, and Soil

    Article  CAS  Google Scholar 

  10. MacDonald JM (2009) Manure use for fertilizer and for energy: report to congress. DIANE Publishing

    Google Scholar 

  11. Abelha P et al (2003) Combustion of poultry litter in a fluidised bed combustor. Fuel 82(6): 687–692. Elsevier

    Google Scholar 

  12. Plasynski SI, Goldberg PM, Chen ZY (2002) Using animal waste based biomass for power and heat production while reducing environmental risks. In: 19th annual international Pittsburgh coal conference, Pittsburgh, PA

    Google Scholar 

  13. Edwards DR, Daniel TC (1992) Environmental impacts of on-farm poultry waste disposal—A review. Bioresour Technol 41(1):9–33. Elsevier

    Article  CAS  Google Scholar 

  14. Kelleher BP et al (2002) Advances in poultry litter disposal technology–a review. Bioresour Technol 83(1):27–36. Elsevier

    Article  CAS  Google Scholar 

  15. Billen P et al (2015) Electricity from poultry manure: a cleaner alternative to direct land application. J Clean Prod 96:467–475. Elsevier

    Article  CAS  Google Scholar 

  16. Huang Y et al (2014) Techno-economic analysis of biochar production and energy generation from poultry litter waste. Energy Procedia 61:714–717. Elsevier

    Article  Google Scholar 

  17. Lynch D et al (2013) Utilisation of poultry litter as an energy feedstock. Biomass Bioenergy 49:197–204. Elsevier

    Article  CAS  Google Scholar 

  18. Orrico ACA et al (2012) Effect of different substrates on composting of poultry litter. Revista Brasileira de Zootecnia 41(7):1764–1768. SciELO Brasil

    Article  Google Scholar 

  19. Dayananda BS, Sreepathi LK (2013) An experimental study on gasification of chicken litter. Int Res J Environ Sci 2(1):63–67

    Google Scholar 

  20. Whitely N, Ozao R, Cao Y et al (2006) Multi-utilization of chicken litter as a biomass source. Part II. Pyrolysis. Energy & Fuels 20(6):2666–2671. ACS Publications

    Article  CAS  Google Scholar 

  21. Sistani KR et al (2003) Characterization of broiler cake and broiler litter, the by-products of two management practices. Bioresour Technol 90(1):27–32. Elsevier

    Article  CAS  Google Scholar 

  22. Nicholson FA, Chambers BJ, Smith KA (1996) Nutrient composition of poultry manures in England and Wales. Bioresour Technol 58(3):279–284. Elsevier

    Article  CAS  Google Scholar 

  23. Kirubakaran V et al (2007) Kinetics of auto-gasification of poultry litter. Int J Green Energy 4(5):519–534. Taylor & Francis

    Article  CAS  Google Scholar 

  24. Reardon JP et al (2002) Demonstration of a small modular biopower system using poultry litter. Community Power Corporation (US)

    Google Scholar 

  25. Zumdahl SS, Zumdahl SA (2007) Chemistry/Steven Zumdahl, Susan Zumdahl. Houghton Mifflin Co, Boston, MA

    Google Scholar 

  26. Zhu S, Lee SW (2005) Co-combustion performance of poultry wastes and natural gas in the advanced swirling fluidized bed combustor (SFBC). Waste Manag 25(5):511–518. Elsevier

    Article  CAS  Google Scholar 

  27. Ndegwa PM, Thompson SA, Merka WC (1991) Fractionation of poultry litter for enhanced utilization. Trans ASAE 34(3):992–997. American Society of Agricultural and Biological Engineers

    Article  Google Scholar 

  28. Lu J et al (2003) Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl Environ Microbiol Am Soc Microbiol 69(2):901–908

    Article  CAS  Google Scholar 

  29. Hartel PG et al (2000) Survival of fecal coliforms in fresh and stacked broiler litter. J Appl Poult Res 9(4):505–512. Oxford University Press, Oxford, UK

    Article  Google Scholar 

  30. Shamlou PA (2013) Handling of bulk solids: theory and practice. Elsevier

    Google Scholar 

  31. Standard A (2003) Method of determining and expressing fineness of feed materials by sieving. ASABE, St. Joseph, MI

    Google Scholar 

  32. Barbosa-Cánovas GV et al (2005) Food powders: physical properties, processing, and functionality. Springer

    Google Scholar 

  33. Standard A (2005) Method for Determination of tap density of metallic powders and compounds. ASTM International, West Conshohocken, PA

    Google Scholar 

  34. Balasubramanian D (2001) PH—postharvest technology: physical properties of raw cashew nut. J Agric Eng Res 78(3):291–297. Elsevier

    Article  Google Scholar 

  35. Deshpande SD, Bal S, Ojha TP (1993) Physical properties of soybean. J Agric Eng Res 56(2):89–98. Elsevier

    Article  Google Scholar 

  36. Nimkar PM, Chattopadhyay PK (2001) PH—Postharvest technology: some physical properties of green gram. J Agric Eng Res 80(2):183–189. Elsevier

    Article  Google Scholar 

  37. Mani S et al (2003) Mechanical properties of corn stover grind. In: 2003 ASAE annual meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  38. Bernhart M, Fasina O, Fulton J (2007) Characterization of poultry litter for storage and process design. In: 2007 ASAE annual meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  39. Woodcock CR, Mason JS (2012) Bulk solids handling: an introduction to the practice and technology. Springer Science & Business Media

    Google Scholar 

  40. Fayed ME, Skocir T (1996) Mechanical conveyors: selection and operation. CRC Press

    Google Scholar 

  41. Skocir T (2018) Mechanical conveyors: selection and operation. Routledge

    Google Scholar 

  42. Krylova NI et al (1997) The influence of ammonium and methods for removal during the anaerobic treatment of poultry manure. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 70(1):99–105. Wiley Online Library

    Google Scholar 

  43. Sellami F et al (2008) Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresour Technol 99(5):1177–1188. Elsevier

    Article  CAS  Google Scholar 

  44. Dalólio FS et al (2017) Poultry litter as biomass energy: a review and future perspectives. Renew Sustain Energy Rev 76:941–949. Elsevier

    Article  Google Scholar 

  45. Bock BR (2000) Economic and technical feasibility of energy production from poultry litter. TVA Public Power Institute

    Google Scholar 

  46. Dávalos JZ, Roux MV, Jiménez P (2002) Evaluation of poultry litter as a feasible fuel. Thermochimica Acta 394(1–2):261–266. Elsevier

    Article  Google Scholar 

  47. Faostat F (2016) Agriculture Organization of the United Nations Statistics Division, Economic and Social Development Department, Rome, Italy. http://faostat3.fao.org/home/E. Accessed 31 Dec 2016

  48. Steinfeld H et al (2006) Livestock’s long shadow: environmental issues and options. Food & Agriculture Org

    Google Scholar 

  49. Duncan J (2005) Composting chicken manure. WSU Cooperative Extension, King County Master Gardener and Cooperative Extension Livestock Advisor

    Google Scholar 

  50. Place F et al (2003) Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems. Food Policy 28(4):365–378. Elsevier

    Article  Google Scholar 

  51. Mellek JE et al (2010) Dairy liquid manure and no-tillage: physical and hydraulic properties and carbon stocks in a Cambisol of southern Brazil. Soil Tillage Res 110(1):69–76. Elsevier

    Article  Google Scholar 

  52. Joardder MUH, Masud MH (2019b) Foods and Developing Countries. In: Food preservation in developing countries: challenges and solutions. Springer, pp 1–25

    Google Scholar 

  53. Imbeah M (1998) Composting piggery waste: a review. Bioresour Technol 63(3):197–203. Elsevier

    Article  CAS  Google Scholar 

  54. Haug RT (1993) Development of simulation models. The Practical Handbook of Compost Engineering, Lewis Publishers 1(993):342–436

    Google Scholar 

  55. Sartaj M, Fernandes L, Patni NK (1997) Performance of forced, passive, and natural aeration methods for composting manure slurries. Trans ASAE 40(2):457–463. American Society of Agricultural and Biological Engineers

    Article  Google Scholar 

  56. Solano ML et al (2001) SE—structure and environment: performance characteristics of three aeration systems in the composting of sheep manure and straw. J Agric Eng Res 79(3):317–329. Elsevier

    Article  Google Scholar 

  57. Yu S, Clark OG, Leonard JJ (2006) Airflow in passively aerated compost. Paper no. 06113. In: American Society of Agricultural Engineers (ASAE) annual meeting. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

    Google Scholar 

  58. Lynch NJ, Cherry RS (1996) Design of passively aerated compost piles: vertical air velocities between the pipes. Biotechnol Progr 12(5):624–629. Wiley Online Library

    Article  CAS  Google Scholar 

  59. Zhu N et al (2004) Performance characteristics of three aeration systems in the swine manure composting. Bioresour Technol 95(3):319–326. Elsevier

    Article  CAS  Google Scholar 

  60. Sylla YB et al (2006) Feasibility study of a passive aeration reactor equipped with vertical pipes for compost stabilization of cow manure. Waste Manag Res 24(5):456–464. Sage Publications Sage CA: Thousand Oaks, CA

    Article  CAS  Google Scholar 

  61. Watanabe T, Kuroda M (2003) Effect of the number of the vertical pipes for the passive aeration on the composting rate. J Water Environ Technol 1(2):225–232. Japan Society on Water Environment

    Article  Google Scholar 

  62. Taiwo LB, Oso BA (2004) Influence of composting techniques on microbial succession, temperature and pH in a composting municipal solid waste. African J Biotechnol 3(4):239–243. Academic Journals (Kenya)

    CAS  Google Scholar 

  63. Tiquia SM, Tam NFY, Hodgkiss IJ (1998) Salmonella elimination during composting of spent pig litter. Bioresour Technol 63(2):193–196. Elsevier

    Article  CAS  Google Scholar 

  64. Sanchuki CE et al (2011) Evaluation of poultry litter traditional composting process. Braz Archiv Biol Technol 54(5):1053–1058. SciELO Brasil

    Article  Google Scholar 

  65. Amanullah MM, Sekar S, Muthukrishnan P (2010) Prospects and potential of poultry manure. Asian J Plant Sci 9(4):172

    Article  Google Scholar 

  66. Sims JT, Murphy DW, Handwerker TS (1993) Composting of poultry wastes: implications for dead poultry disposal and manure management. J Sustain Agric 2(4):67–82. Taylor & Francis

    Article  Google Scholar 

  67. Masud MH et al (2019) Renewable energy in Bangladesh: current situation and future prospect. Int J Sustain Energy 1–44. Taylor & Francis

    Google Scholar 

  68. Qian X et al (2018) Regression model to predict the higher heating value of poultry waste from proximate analysis. Resource 7(3):39. Multidisciplinary Digital Publishing Institute

    Article  Google Scholar 

  69. Quiroga G et al (2010) Physico-chemical analysis and calorific values of poultry manure. Waste Manag 30(5):880–884. Elsevier

    Article  CAS  Google Scholar 

  70. Yurdakul S (2016) Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry. Renew Energy 89:215–223. Elsevier

    Article  CAS  Google Scholar 

  71. Bolhar-Nordenkamp M et al (2009) Combustion of poultry litter in bubbling fluidised beds-results from a new 120 MWth unit. In: Proceedings of 17th European biomass conference & exhibition, pp 1–9

    Google Scholar 

  72. Henihan AM et al (2003) Emissions modeling of fluidised bed co-combustion of poultry litter and peat. Bioresour Technol 87(3):289–294. Elsevier

    Article  CAS  Google Scholar 

  73. Sordi A, de Souza SNM, de Oliveira FH (2005) Biomassa gerada a partir da produção avícola na região Oeste do Estado do Paraná: uma fonte de energia. Acta Scientiarum Technol 27(2):183–190. Universidade Estadual de Maringá

    Article  Google Scholar 

  74. Wiedemann SG (2015) Energy recovery from litter: a guide for users. Rural Industries Research and Development Corporation, Canberra, Australia

    Google Scholar 

  75. Jeswani HK et al (2019) Environmental impacts of poultry litter gasification for power generation. Energy Procedia 161:32–37. Elsevier

    Article  CAS  Google Scholar 

  76. Guran S (2018) Sustainable waste-to-energy technologies: gasification and pyrolysis. In: Sustainable food waste-to-energy systems. Elsevier, pp 141–158

    Google Scholar 

  77. Ma Q et al (2019) Implications of poultry litter usage for electricity production. Waste Manag 95:493–503. Elsevier

    Article  Google Scholar 

  78. Tańczuk M et al (2017) Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Elsevier, Renewable Energy

    Google Scholar 

  79. Ng WC et al (2017) Co-gasification of woody biomass and chicken manure: syngas production, biochar reutilization, and cost-benefit analysis. Energy 139:732–742. Elsevier

    Article  CAS  Google Scholar 

  80. Perondi D et al (2017) Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Protect 109:478–488. Elsevier

    Article  CAS  Google Scholar 

  81. Hussein MS et al (2017) Temperature and gasifying media effects on chicken manure pyrolysis and gasification. Fuel 202:36–45. Elsevier

    Article  CAS  Google Scholar 

  82. Font-Palma C (2012) Characterisation, kinetics and modelling of gasification of poultry manure and litter: an overview. Energy Convers Manag 53(1):92–98. Elsevier

    Article  CAS  Google Scholar 

  83. Nabi AR, Masud MH, Alam QMI (2014) Purification of TPO (Tire Pyrolytic Oil) and its use in diesel engine. IOSR J Eng 4(3):1

    Article  Google Scholar 

  84. Joardder MUH et al (2017) Solar pyrolysis: converting waste into asset using solar energy. In: Clean energy for sustainable development. Elsevier, pp 213–235

    Google Scholar 

  85. Masud MH et al (2019) Perspective of biomass energy conversion in Bangladesh. Clean Technol Environ Policy 21(4):719–731. https://doi.org/10.1007/s10098-019-01668-2

    Article  Google Scholar 

  86. Mourshed M, Masud MH, Fazlur Rashid MUHJ (2017) Towards the effective plastic waste management in Bangladesh: a review. Environ Sci Pollut Res

    Google Scholar 

  87. Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145. Elsevier

    Article  CAS  Google Scholar 

  88. Baniasadi M et al (2016) Waste to energy valorization of poultry litter by slow pyrolysis. Renew Energy 90:458–468 Elsevier

    Article  CAS  Google Scholar 

  89. Mau V, Gross A (2018) Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar. Appl Energy 213:510–519. Elsevier

    Article  CAS  Google Scholar 

  90. Agblevor FA et al (2010) Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Manag 30(2):298–307. Elsevier

    Article  CAS  Google Scholar 

  91. Joardder MUH, Masud MH (2019) Food preservation in developing countries: challenges and solutions. Springer

    Google Scholar 

  92. Williams PT (2005) Waste treatment and disposal. John Wiley & Sons

    Book  Google Scholar 

  93. Callaghan FJ et al (1999) Co-digestion of waste organic solids: batch studies. Bioresour Technol 67(2):117–122. Elsevier

    Article  CAS  Google Scholar 

  94. Itodo IN, Awulu JO (1999) Effects of total solids concentrations of poultry, cattle, and piggerywaste slurries on biogas yield. Trans ASAE 42(6):1853. American Society of Agricultural and Biological Engineers

    Article  Google Scholar 

  95. Borowski S, Weatherley L (2013) Co-digestion of solid poultry manure with municipal sewage sludge. Bioresour Technol 142:345–352. Elsevier

    Article  CAS  Google Scholar 

  96. Hassan M et al (2016) Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: AC/N optimization case. Bioresour Technol 211:534–541. Elsevier

    Article  CAS  Google Scholar 

  97. Jijai S, Siripatana C (2017) Kinetic model of biogas production from co-digestion of Thai Rice noodle wastewater (Khanomjeen) with chicken manure. Energy Procedia 138:386–392. Elsevier

    Article  CAS  Google Scholar 

  98. Bujoczek G et al (2000) High solid anaerobic digestion of chicken manure. J Agric Eng Res 76(1):51–60. Elsevier

    Article  Google Scholar 

  99. Magbanua BS Jr, Adams TT, Johnston P (2001) Anaerobic codigestion of hog and poultry waste. Bioresour Technol 76(2):165–168. Elsevier

    Article  CAS  Google Scholar 

  100. Zahan Z et al (2018) Semi-continuous anaerobic co-digestion of chicken litter with agricultural and food wastes: a case study on the effect of carbon/nitrogen ratio, substrates mixing ratio and organic loading. Bioresource technology 270:245–254. Elsevier

    Article  CAS  Google Scholar 

  101. Abouelenien F et al (2014) Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresour Technol 159:80–87. Elsevier

    Article  CAS  Google Scholar 

  102. Molaey R, Bayrakdar A, Çalli B (2018) Long-term influence of trace element deficiency on anaerobic mono-digestion of chicken manure. J Environ Manag 223:743–748. Elsevier

    Article  CAS  Google Scholar 

  103. Bernhart M et al (2010) Compaction of poultry litter. Bioresour Technol 101(1):234–238. Elsevier

    Article  CAS  Google Scholar 

  104. Felfli FF et al (2011) Biomass briquetting and its perspectives in Brazil. Biomass Bioenergy 35(1):236–242. Elsevier

    Article  Google Scholar 

  105. Fisher EM et al (2012) Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresour Technol 119:157–165. Elsevier

    Article  CAS  Google Scholar 

  106. Gil MV et al (2015) Grindability and combustion behavior of coal and torrefied biomass blends. Bioresour Technol 191:205–212 Elsevier

    Article  CAS  Google Scholar 

  107. Dhungana A, Dutta A, Basu P (2012) Torrefaction of non-lignocellulose biomass waste. Can J Chem Eng 90(1):186–195. Wiley Online Library

    Article  CAS  Google Scholar 

  108. Mu’min GF et al (2017) Municipal solid waste processing and separation employing wet torrefaction for alternative fuel production and aluminum reclamation. Waste Manag 67:106–120. Elsevier

    Google Scholar 

  109. Zheng A et al (2015) Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour Technol 176:15–22. Elsevier

    Article  CAS  Google Scholar 

  110. Sugano M et al (2009) Liquefaction process for a hydrothermally treated waste mixture containing plastics. J Mater Cycles Waste Manag 11(1):27–31. Springer

    Article  CAS  Google Scholar 

  111. Yang W et al (2015) Elevating the fuel properties of Humulus lupulus, Plumeria alba and Calophyllum inophyllum L. through wet torrefaction. Fuel 146:88–94. Elsevier

    Article  CAS  Google Scholar 

  112. Zaini IN, Nurdiawati A, Aziz M (2017) Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae. Appl Energy 207:134–145. Elsevier

    Article  CAS  Google Scholar 

  113. Udomsirichakorn J, Salam PA (2014) Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew Sustain Energy Rev 30:565–579. Elsevier

    Article  CAS  Google Scholar 

  114. Darmawan A et al (2017) Enhanced process Integration of entrained flow gasification and combined cycle: modeling and simulation using Aspen plus. Energy Procedia 105:303–308. Elsevier

    Article  Google Scholar 

  115. Furusawa T, Tsutsumi A (2005) Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification. Appl Catal A: General 278(2):207–212. Elsevier

    Article  CAS  Google Scholar 

  116. Uddin MA et al (2008) Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel 87(4–5):451–459 Elsevier

    CAS  Google Scholar 

  117. Cahyono RB et al (2013) Catalytic coal-tar decomposition to enhance reactivity of low-grade iron ore. Fuel Process Technol 113:84–89. Elsevier

    Article  CAS  Google Scholar 

  118. Masud MH et al (2019) Towards the effective E-waste management in Bangladesh: a review. Environ Sci Pollut Res 26(2). https://doi.org/10.1007/s11356-018-3626-2

  119. Lyngfelt A, Leckner B, Mattisson T (2001) A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem Eng Sci 56(10):3101–3113. Elsevier

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadi Hasan Masud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masud, M.H., Ananno, A.A., Mahjabeen, M., Ahmed, N., Dabnichki, P. (2023). Prospect of Chicken Litter as a Source of Sustainable Energy. In: Jawaid, M., Khan, A. (eds) Manure Technology and Sustainable Development. Sustainable Materials and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4120-7_5

Download citation

Publish with us

Policies and ethics