Skip to main content

Anaerobic Co-digestion of Liquid Dairy Manure with Food Waste: A Sustainable Source of Green Energy

  • Chapter
  • First Online:
Manure Technology and Sustainable Development

Abstract

Biomass is the third most common energy source after coal and oil, so biogas generated from biomass waste (i.e., food waste and liquid dairy manure) can become an attractive energy source for the upcoming future. Anaerobic digestion is an economically feasible and environmentally sustainable method for generating energy from agricultural residue, organic wastes, and sewage sludge. However, anaerobic mono digestion of a single type feed material is limited by its physio-chemical properties. In order to reduce its drawbacks, modern industries employ anaerobic co-digestion, in which multiple substrates are being co-digested in a single batch. Substrates for anaerobic co-digestion are chosen to complement each other’s characteristics (e.g., oxygen demand, pH, ratio of carbon to nitrogen, biological oxygen demands, etc.). Experiments have provided substantial evidence that this synergistic effect of co-digestion improves the biogas production capacity of conventional anaerobic digestion system. This chapter reviews the potential of anaerobic co-digestion of food waste mixed with liquid dairy manure. Physio-chemical characteristics of liquid dairy manure and food waste were observed independently to assess their potential as a co-substrate. Additionally, results of methane fermentation in various anaerobic co-digestion systems were investigated. The analysis shows that in all cases, anaerobic co-digestion of perished food products with liquid dairy manure provides from 9% up to 34% better specific methane production rate than mono digestion of a single substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FW:

Food Waste

MSW:

Municipal Solid Waste

UK:

United Kingdom

USA:

United States of America

BTU:

British Thermal Unit

OFMSW:

Organic Fraction of Municipal Solid Waste

OM:

Organic Matter

VFA:

Volatile Fatty Acid

GPR:

Gas Production Rate

TS:

Total Solid

COD:

Chemical Oxygen Demand

BOD:

Biological Oxygen Demand

HRT:

Hydraulic Retention Time

WAS:

Waste Activated Sludge

FAO:

Food and Agriculture Organization

FOG:

Fats, Oil and Grease

OLR:

Organic Loading Rate

VS:

Volatile Solid

References

  1. Joardder MUH, Masud MH (2019) Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  2. Masud MH, Karim A, Ananno AA, Ahmed MA (2019) Sustainable food drying techniques in developing countries: prospects and challenges, 1st edn. Springer (accepted, in press)

    Google Scholar 

  3. Masud MH, Karim A, Ananno AA, Ahmed MA (2019) Insights of drying. In: Sustainable food drying techniques in developing countries: prospects and challenges, 1st edn. Springer (accepted, in press)

    Google Scholar 

  4. Mourshed M, Masud MH, Rashid F, Joardder MUH (2017) Towards the effective plastic waste management in bangladesh: a review. Environ Sci Pollut Res 24(35):27021–27046

    Article  Google Scholar 

  5. Joardder MUH, Masud MH (2019) Feasibility of advance technologies. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  6. Masud MH, Akram W, Ahmed A, Ananno AA, Mourshed M, Hasan M, Joardder MUH (2019) Towards the effective E-waste management in Bangladesh: a review. Environ Sci Pollut Res 26(2):1250–1276

    Article  Google Scholar 

  7. Newaj N, Masud MH (2014) Utilization of waste plastic to save the environment. In: International conference on mechanical, industrial and energy engineering, KUET, Khulna, Bangladesh, pp 1–4

    Google Scholar 

  8. Masud MH, Karim A, Ananno AA, Ahmed MA (2019) Energy and drying. In: Sustainable food drying techniques in developing countries: prospects and challenges, 1st edn. Springer (accepted, in press)

    Google Scholar 

  9. Rich T, Felfel A (2015) An overview of Canadian food loss and waste estimates. Agriculture and Agri-Food Canada

    Google Scholar 

  10. Thi NB, Dung GK, Lin C-Y (2015) An overview of food waste management in developing countries: current status and future perspective. J Environ Manag 157:220–229

    Article  Google Scholar 

  11. Joardder MUH, Masud MH (2019) Foods and developing countries. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  12. Webber M (2017) Wasting food means wasting energy—Cockrell School of Engineering

    Google Scholar 

  13. Masud MH, Karim A, Ananno AA, Ahmed MA (2019) Practiced drying technologies in developing countries. In: Sustainable food drying techniques in developing countries: prospects and challenges, 1st edn. Springer (accepted, in press)

    Google Scholar 

  14. Masud MH, Karim A, Ananno AA, Ahmed MA (2019) Sustainable drying techniques for developing countries. In: Sustainable food drying techniques in developing countries: prospects and challenges, 1st edn. Springer (accepted, in press)

    Google Scholar 

  15. Masud MH, Ananno AA, Arefin AM, Ahamed R, Das P, Joardder MU (2019) Perspective of biomass energy conversion in Bangladesh. Clean Technol Environ Policy 21(4):719–731

    Article  Google Scholar 

  16. Kaparaju P, Sari Luostarinen E, Kalmari JK, Rintala J (2002) Co-digestion of energy crops and industrial confectionery by-products with cow manure: batch-scale and farm-scale evaluation. Water Sci Technol 45(10):275–280

    Article  CAS  Google Scholar 

  17. Lema JM, Omil F (2001) Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Sci Technol 44(8):133–140

    Article  CAS  Google Scholar 

  18. Lettinga G (2001) Digestion and degradation, air for life. Water Sci Technol 44(8):157–176

    Article  CAS  Google Scholar 

  19. Masud MH, Ahamed R, Joardder MUH, Hasan M (2019) Mathematical model of heat transfer and feasibility test of improved cooking stoves in Bangladesh. Int J Ambient Energy 40(3)

    Google Scholar 

  20. Masud MH, Nuruzzaman M, Ahamed R, Ananno AA, Amanullah Tomal ANM (2019) Renewable energy in Bangladesh: current situation and future prospect. Int J Sustain Energy 1–44

    Google Scholar 

  21. Cecchi F, Traverso PG, Perin G, Vallini G (1988) Comparison of co-digestion performance of two differently collected organic fractions of municipal solid waste with sewage sludges. Environ Technol 9(5):391–400

    CAS  Google Scholar 

  22. Hamzawi N, Kennedy KJ, McLean DD (1998) Technical feasibility of anaerobic co-digestion of sewage sludge and municipal solid waste. Environ Technol 19(10):993–1003

    Article  CAS  Google Scholar 

  23. Pohland FG (1996) Landfill bioreactors: fundamentals and practice. Water Qual Int 9(1996):18–22

    Google Scholar 

  24. Rintala JA, Ahring BK (1994) A two-stage thermophilic anaerobic process for the treatment of source sorted household solid waste. Biotechnol Lett 16(10):1097–1102

    Article  CAS  Google Scholar 

  25. Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7(3):609–616

    Article  CAS  Google Scholar 

  26. Ananno AA, Masud MH, Chowdhury SA, Dabnichki P, Ahmed N, Arefin AME (2021) Sustainable food waste management model for Bangladesh. Sustain Prod Consumption 27:35–51

    Google Scholar 

  27. Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Bio/Technol 11(4):325–341

    Article  CAS  Google Scholar 

  28. Cavinato C, Fatone F, Bolzonella D, Pavan P (2010) Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresour Technol 101(2):545–550

    Article  CAS  Google Scholar 

  29. Li R, Chen S, Li X (2010) Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl Biochem Biotechnol 160(2):643–654

    Article  CAS  Google Scholar 

  30. Zhang L, Lee Y-W, Jahng D (2011) Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour Technol 102(8):5048–5059

    Article  CAS  Google Scholar 

  31. Bouallagui H, Lahdheb H, Ben Romdan E, Rachdi B, Hamdi M (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manag 90(5):1844–1849

    Article  CAS  Google Scholar 

  32. Kacprzak A, Krzystek L, Ledakowicz S (2010) Co-digestion of agricultural and industrial wastes. Chem Pap 64(2):127–131

    Article  CAS  Google Scholar 

  33. Lehtomäki A, Huttunen S, Rintala JA (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51(3):591–609

    Article  Google Scholar 

  34. Wu X, Yao W, Zhu J (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. In: 2010 Pittsburgh, Pennsylvania, 20–23 June 2010. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  35. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74(1):3–16

    Article  CAS  Google Scholar 

  36. Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280

    Article  CAS  Google Scholar 

  37. Zhang C, Xiao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176

    Google Scholar 

  38. Cavinato C, Bolzonella D, Pavan P, Fatone F, Cecchi F (2013) Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot-and full-scale reactors. Renew Energy 55:260–265

    Article  CAS  Google Scholar 

  39. Gomez X, Cuetos MJ, Cara J, Moran A, Garcia AI (2006) Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: conditions for mixing and evaluation of the organic loading rate. Renew Energy 31(12):2017–2024

    Article  CAS  Google Scholar 

  40. Hartmann H, Ahring BK (2005) Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Res 39(8):1543–1552

    Article  CAS  Google Scholar 

  41. Jiménez J, Guardia-Puebla Y, Cisneros-Ortiz ME, Morgan-Sagastume JM, Guerra G, Noyola A (2015) Optimization of the specific methanogenic activity during the anaerobic co-digestion of pig manure and rice straw, using industrial clay residues as inorganic additive. Chem Eng J 259:703–714

    Article  Google Scholar 

  42. Kaparaju P, Rintala J (2005) Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Resour Conserv Recycl 43(2):175–188

    Article  Google Scholar 

  43. Maragkaki AE, Fountoulakis M, Gypakis A, Kyriakou A, Lasaridi K, Manios T (2017) Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants. Waste Manag 59:362–370

    Article  CAS  Google Scholar 

  44. Murto M, Björnsson L, Mattiasson B (2004) Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Environ Manag 70(2):101–107

    Google Scholar 

  45. Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J (Water Pollut Control Fed) 352–366

    Google Scholar 

  46. Noike T, Endo G, Chang J-E, Yaguchi J-I, Matsumoto J-I (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27(10):1482–1489

    Article  CAS  Google Scholar 

  47. Izumi K, Okishio Y-k, Nagao N, Niwa C, Yamamoto S, Toda T (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegrad 64(7):601–608

    Article  CAS  Google Scholar 

  48. Morales-Polo C, Cledera-Castro MDM, Moratilla Soria BY (2018) Reviewing the anaerobic digestion of food waste: from waste generation and anaerobic process to its perspectives. Appl Sci 8(10):1804

    Google Scholar 

  49. Agyeman FO, Tao W (2014) Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate. J Environ Manag 133:268–274

    Article  CAS  Google Scholar 

  50. Montgomery LF R, Bochmann G (2014) Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy, Ireland

    Google Scholar 

  51. Bougrier C, Albasi C, Delgenès J-P, Carrère H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process 45(8):711–718

    Article  CAS  Google Scholar 

  52. Prorot A, Julien L, Christophe D, Patrick L (2011) Sludge disintegration during heat treatment at low temperature: a better understanding of involved mechanisms with a multiparametric approach. Biochem Eng J 54(3):178–184

    Article  CAS  Google Scholar 

  53. Skiadas IV, Gavala HN, Lu J, Ahring BK (2005) Thermal pre-treatment of primary and secondary sludge at 70 C prior to anaerobic digestion. Water Sci Technol 52(1–2):161–166

    Google Scholar 

  54. Appels L, Degrève J, Van der Bruggen B, Van Impe J, Dewil R (2010) Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour Technol 101(15):5743–5748

    Article  CAS  Google Scholar 

  55. Ma J, Duong TH, Smits M, Verstraete W, Carballa M (2011) Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 102(2):592–599

    Article  CAS  Google Scholar 

  56. Rafique R, Poulsen TG, Nizami A-S, Murphy JD, Kiely G (2010) Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy 35(12):4556–4561

    Article  CAS  Google Scholar 

  57. Li Y, Jin Y (2015) Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renew Energy 77:550–557

    Article  CAS  Google Scholar 

  58. Torres ML, Lloréns MCE (2008) Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag 28(11):2229–2234

    Google Scholar 

  59. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  Google Scholar 

  60. Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment—a review. Biotechnol Bioeng 109(6):1430–1442

    Article  CAS  Google Scholar 

  61. Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77

    Article  CAS  Google Scholar 

  62. Doğan I, Sanin FD (2009) Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method. Water Res 43(8):2139–2148

    Article  Google Scholar 

  63. Carrere H, Rafrafi Y, Battimelli A, Torrijos M, Delgenes JP, Motte C (2012) Improving methane production during the codigestion of waste-activated sludge and fatty wastewater: impact of thermo-alkaline pretreatment on batch and semi-continuous processes. Chem Eng J 210:404–409

    Article  CAS  Google Scholar 

  64. Rani R, Uma SA, Kumar SK, Yeom I-T, Rajesh Banu J (2012) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103(1):415–424

    Article  Google Scholar 

  65. Xu J, Yuan H, Lin J (2014) Evaluation of thermal, thermal-alkaline, alkaline and electrochemical pretreatments on sludge to enhance anaerobic biogas production. J Taiwan Inst Chem Eng 45(5):2531–2536

    Article  CAS  Google Scholar 

  66. Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714

    Article  CAS  Google Scholar 

  67. Lindmark J, Leksell N, Schnürer A, Thorin E (2012) Effects of mechanical pre-treatment on the biogas yield from ley crop silage. Appl Energy 97:498–502

    Article  CAS  Google Scholar 

  68. Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717

    Article  CAS  Google Scholar 

  69. Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43(1):273–282

    Article  CAS  Google Scholar 

  70. Hamzawi N, Kennedy KJ, McLean DD (1998) Anaerobic digestion of co-mingled municipal solid waste and sewage sludge. Water Sci Technol 38(2):127

    Article  CAS  Google Scholar 

  71. Paavola T, Syväsalo E, Rintala J (2006) Co-digestion of manure and biowaste according to the EC animal by-products regulation and Finnish national regulations. Water Sci Technol 53(8):223–231

    Article  CAS  Google Scholar 

  72. Palmowski LM, Müller JA (2000) Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci Technol 41(3):155–162

    Article  CAS  Google Scholar 

  73. Simonetti M, Rossi G, Cabbai V, Goi D (2010) Experimental tests of ultrasonic pretreatment on organic fractions for anaerobic co-digestion. In: Proceedings of Venice 2010 third international symposium on energy from biomass and waste, 8–10 Nov

    Google Scholar 

  74. Wang G (2010) Biogas production from energy crops and agriculture residues

    Google Scholar 

  75. Qiao W, Peng C, Wang W, Zhang ZZ (2011) Biogas production from supernatant of hydrothermally treated municipal sludge by upflow anaerobic sludge blanket reactor. Bioresour Technol 102(21):9904–9911

    Article  CAS  Google Scholar 

  76. Del Borghi A, Converti A, Palazzi E, Del Borghi M (1999) Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste. Bioprocess Eng 20(6):553–560

    Article  Google Scholar 

  77. Li YY, Sasaki H, Yamashita K, Seki K, Kamigochi I (2002) High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol 45(12):143–150

    Article  CAS  Google Scholar 

  78. Converti A, Drago F, Ghiazza G, Del Borghi M, Macchiavello A (1997) Co-digestion of municipal sewage sludges and pre-hydrolysed woody agricultural wastes. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 69(2):231–239

    Article  CAS  Google Scholar 

  79. Kübler H, Hoppenheidt K, Hirsch P, Kottmair A, Nimmrichter R, Nordsieck H, Mücke W, Swerev M (2000) Full scale co-digestion of organic waste. Water Sci Technol 41(3):195–202

    Article  Google Scholar 

  80. Joardder MUH, Masud MH (2019) Causes of food waste. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham.

    Google Scholar 

  81. Joardder MUH, Masud MH (2019) Possible solution of food preservation techniques. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  82. Joardder MUH, Mourshed M, Masud MH (2019) Water in foods. In: Joardder MUH, Mourshed M, Masud MH (eds) State of bound water: measurement and significance in food processing. Springer International Publishing, Cham, pp 7–27

    Google Scholar 

  83. Masud MH, Karim A, Ananno AA, Ahmed MA (2019) Challenges in implementing proposed sustainable food drying techniques. In: Sustainable food drying techniques in developing countries: prospects and challenges, 1st edn. Springer (accepted, in press)

    Google Scholar 

  84. Joardder MUH, Masud MH (2019) Challenges and mistakes in food preservation. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  85. Lipinski B, Hanson C, Lomax J, Kitinoja L, Waite R, Searchinger T (2013) Reducing food loss and waste. World Resources Institute working paper, June

    Google Scholar 

  86. Ananno AA, Masud MH, Dabnichki P, Ahmed A (2020) Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Sol Energy 196:270–286

    Google Scholar 

  87. FAO (2011) Global food losses and food waste—extent, causes and prevention

    Google Scholar 

  88. Joardder MUH, Masud MH (2019) Feasibility of advance technologies. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  89. Masud M, Joardder MUH, Islam MT, Hasan MM, Ahmed MM (2017) Feasibility of utilizing waste heat in drying of plant-based food materials. In: International conference on mechanical, industrial and materials engineering, RUET, Rajshahi, Bangladesh

    Google Scholar 

  90. Joardder MUH, Masud MH (2019) Harmful side effects of food processing. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  91. Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B: Biol Sci 365(1554):3065–3081

    Article  Google Scholar 

  92. Joardder MU, Mandal S, Masud MH (2018) Proposal of a solar storage system for plant-based food materials in Bangladesh. Int J Ambient Energy 1–17

    Google Scholar 

  93. Joardder MUH, Masud MH (2019) A brief history of food preservation. In: Food preservation in developing countries: challenges and solutions. Springer International Publishing, Cham

    Google Scholar 

  94. Masud MH, Islam MT, Ananno AA, Ahmed MA (2019) Towards a zero energy based food drying system by utilizing the waste heat. In: International conference on engineering research, innovation and education, SUST, Sylhet, Bangladesh

    Google Scholar 

  95. Joardder MU, Masud MH, Azharul M (2017) Relationship between intermittency of drying, microstructural changes, and food quality. In: Intermittent and nonstationary drying technologies: principles and applications, p 123

    Google Scholar 

  96. Masud MH, Joardder MUH, Karim MA (2019) Effect of hysteresis phenomena of cellular plant-based food materials on convection drying kinetics. Dry Technol 37(10)

    Google Scholar 

  97. US Environmental Protection Agency (2016) Advancing sustainable materials management: 2014 fact sheet

    Google Scholar 

  98. BIO Intelligence Service (2010) Preparatory study on food waste across EU27, vol 33

    Google Scholar 

  99. Joardder MUH, Masud MH, Nasif S, Plabon JA, Chaklader SH (2019) Development and performance test of an innovative solar derived intermittent microwave convective food dryer. In: AIP conference proceedings, vol 2121. AIP Publishing, p 40010

    Google Scholar 

  100. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392

    Google Scholar 

  101. Xu F, Li Y, Ge X, Yang L, Li Y (2018) Anaerobic digestion of food waste—challenges and opportunities. Bioresour Technol 247:1047–1058

    Article  CAS  Google Scholar 

  102. Sheets JP, Yang L, Ge X, Wang Z, Li Y (2015) Beyond land application: emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag 44:94–115

    Article  CAS  Google Scholar 

  103. Lin CS, Ki LA, Pfaltzgraff L-D, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6(2):426–464

    Article  CAS  Google Scholar 

  104. Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. BioMed Res Int 2017

    Google Scholar 

  105. Banks CJ, Chesshire M, Heaven S, Arnold R (2011) Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102(2):612–620

    Article  CAS  Google Scholar 

  106. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    Google Scholar 

  107. Zhang L, Jahng D (2012) Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Manag 32(8):1509–1515

    Article  CAS  Google Scholar 

  108. Hecht C, Griehl C (2009) Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste. Bioresour Technol 100(2):654–658

    Article  CAS  Google Scholar 

  109. Nagao N, Tajima N, Kawai M, Niwa C, Kurosawa N, Matsuyama T, Yusoff FM, Toda T (2012) Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour Technol 118:210–218

    Article  CAS  Google Scholar 

  110. Kougias PG, Boe K, Tsapekos P, Angelidaki I (2014) Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresour Technol 153:198–205

    Article  CAS  Google Scholar 

  111. Lindner J, Zielonka S, Oechsner H, Lemmer A (2016) Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresour Technol 200:470–476

    Article  CAS  Google Scholar 

  112. Grimberg SJ, Hilderbrandt D, Kinnunen M, Rogers S (2015) Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester—assessment of variable loadings on system performance. Bioresour Technol 178:226–229

    Article  CAS  Google Scholar 

  113. Posmanik R, Labatut RA, Kim AH, Usack JG, Tester JW, Angenent LT (2017) Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour Technol 233:134–143

    Article  CAS  Google Scholar 

  114. Li Y, Shahbazi A, Kadzere CT (2006) Separation of cells and proteins from fermentation broth using ultrafiltration. J Food Eng 75(4):574–580

    Article  CAS  Google Scholar 

  115. Council, National Research (1983) Underutilized resources as animal feedstuffs. The National Academies Press, Washington, DC

    Google Scholar 

  116. Font-Palma C (2019) Methods for the treatment of cattle manure—a review. C 5(2):27

    Google Scholar 

  117. Scarlat N, Fahl F, Dallemand JF, Monforti F, Motola V (2018) A spatial analysis of biogas potential from manure in Europe. Renew Sustain Energy Rev 94:915–930

    Article  Google Scholar 

  118. Boontian N (2014) Conditions of the anaerobic digestion of biomass. Int J Biol, Vet, Agric Food Eng 8(9):960–964

    Google Scholar 

  119. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940

    Article  CAS  Google Scholar 

  120. Wu-Haan W (2008) Evaluation of ultrasonic pretreatment on anaerobic digestion of biomass for methane production

    Google Scholar 

  121. Zhang X, Lin H, Hu B (2016) Phosphorus removal and recovery from dairy manure by electrocoagulation. RSC Adv 6(63):57960–57966

    Google Scholar 

  122. Garcia MC, Szogi AA, Vanotti MB, Chastain JP, Millner PD (2009) Enhanced solid–liquid separation of dairy manure with natural flocculants. Bioresour Technol 100(22):5417–5423

    Article  CAS  Google Scholar 

  123. Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sustain Energy Rev 34:491–500

    Article  CAS  Google Scholar 

  124. Arikan OA, Mulbry W, Rice C (2016) The effect of composting on the persistence of four ionophores in dairy manure and poultry litter. Waste Manag 54:110–117

    Article  CAS  Google Scholar 

  125. Elumalai SD (2016) Evaluating the microbial safety status of products from sustainable organic agriculture

    Google Scholar 

  126. Kelleher BP, Leahy JJ, Henihan AM, O’dwyer TF, Sutton D, Leahy MJ (2002) Advances in poultry litter disposal technology—a review. Bioresour Technol 83(1):27–36

    Google Scholar 

  127. Marañón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García MM (2012) Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag 32(10):1821–1825

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadi Hasan Masud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masud, M.H., Ananno, A.A., Hossain, M., Chowdhury, S.A., Dabnichki, P. (2023). Anaerobic Co-digestion of Liquid Dairy Manure with Food Waste: A Sustainable Source of Green Energy. In: Jawaid, M., Khan, A. (eds) Manure Technology and Sustainable Development. Sustainable Materials and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4120-7_1

Download citation

Publish with us

Policies and ethics