Skip to main content

Image Segmentation by Improved Conical Area Evolutionary Algorithm

  • Conference paper
  • First Online:
Exploration of Novel Intelligent Optimization Algorithms (ISICA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1590))

Included in the following conference series:

  • 480 Accesses

Abstract

Decomposition based multi-objective evolutionary algorithms are suitable to solve the multi-objective optimization problems and becoming popular. For image segmentation, clustering is an unsupervised learning method. Most clustering algorithms results are highly dependent on the initial cluster center and it is important to optimize the segmentation process. In this paper, we used an improved conical area evolutionary algorithm named CAEA-II for the optimization process to search the optimal cluster centers. We consider two objectives namely, minimize the compactness of intra-cluster and maximize the separation of inter-cluster to define the initial optimal cluster centers. Xie Beni index (XBI) calculates the separation and compactness of cluster centers and Average Inter-Cluster Separation (AIS) calculates the clusters minimum overlapping. CAEA-II uses the cone decomposition method to construct the Pareto frontier through optimization of multiple conical sub-problems simultaneously. Then we used Davies-Bouldin Index (DBI) to define the optimal solutions for cluster centers. Experiment results proved that the proposed technique for image segmentation gives better results than the Possibilistic Clustering Algorithm (PCA) and single-objective optimization (SOO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aja-Fernandez, S., Curiale, A.H., Vegas-Sanchez-Ferrero, G.: A local fuzzy thresholding methodology for multi-region image segmentation. Knowl.-Based Syst. 83, 1–12 (2015)

    Article  Google Scholar 

  2. Gao, H., Pun, C.M., Kwong, S.: An efficient image segmentation method based on hybrid particle swarm algorithm with learning strategy. Inf. Sci. 369, 500–521 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  Google Scholar 

  4. Zhao, F., Chen, Y., Liu, H., Fan, J.: Alternate PSO-based adaptive interval type-2 intuitionistic fuzzy c-means clustering algorithm for color image segmentation. IEEE Access 7, 64028–64039 (2019)

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications. Doctoral dissertation ETH 13398, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)

    Google Scholar 

  7. Knowles, J., Corne, D.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  8. Zhang, M., Jiao, L., Ma, W., Ma, J., Gong, M.: Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D. Appl. Soft Comput. 48, 621–637 (2016)

    Article  Google Scholar 

  9. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  10. Li, H., Zhang, Q.: MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  11. Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and AntColony. IEEE Trans. Cybern. 43(6), 1845–1859 (2013)

    Article  Google Scholar 

  12. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13, 841–847 (1991). https://doi.org/10.1109/34.85677

    Article  Google Scholar 

  13. Krishnapuram, R., Keller, J.M.: The possibilistic c-means algorithm: Insights and recommendations. IEEE Trans. Fuzzy Syst. 4, 385–393 (1996)

    Article  Google Scholar 

  14. Ying, W., Xu, X., Feng, Y., Wu, Y.: An efficient conical area evolutionary algorithm for bi-objective optimization. IEICE Trans. Fund. Elec. Comm. Comp. Sci. E95A(8), 1420–1425 (2012)

    Article  Google Scholar 

  15. Mukhopadhyay, A., Bandyopadhyay, S., Maulik, U.: Clustering using multi-objective genetic algorithm and its application to image segmentation. IEEE Trans. Geosci. Remote Sens. (2007)

    Google Scholar 

  16. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45, 1506–1511 (2007)

    Article  Google Scholar 

  17. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multi-objective genetic clustering with ensemble among pareto front solutions: Application to MRI brain image segmentation. In: Proceedings of the Seventh International Conference on Advances in Pattern Recognition (2009)

    Google Scholar 

  18. Mukhopadhyay, A., Maulik, U.: A multiobjective approach to MR brain image segmentation. Appl. Soft Comput. 11, 872–880 (2011)

    Article  Google Scholar 

  19. Zhaoa, F., Liub, H., Fana, J.: A multiobjective spatial fuzzy clustering algorithm for image segmentation. Appl. Soft Comput. 30, 48–57 (2015)

    Article  Google Scholar 

  20. Zhong, Y., Zhang, S., Zhang, L.: Automatic fuzzy clustering based on adaptive multi-objective differential evolution for remote sensing imagery. IEEE Appl. Earth Obs. Remote Sens. 6, 2290–2301 (2013)

    Article  Google Scholar 

  21. Oliveira, P.H.C., et al.: A multiobjective approach for calibration and detection of cervical cells nuclei. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC) (2017)

    Google Scholar 

  22. Liu, R., Wang, R., Huang, J., Li, J., Jiao, L.: Change detection in SAR images using multiobjective optimization and ensemble strategy. IEEE Geosci. Remote Sens. Lett. 18, 1585–1589 (2020)

    Article  Google Scholar 

  23. Xu, X., Shi, Z.: Multi-objective based spectral unmixing for hyperspectral images. ISPRS J. Photogramm. Remote. Sens. 124, 54–69 (2017)

    Article  Google Scholar 

  24. Liu, C., Liu, J., Jiang, Z.: A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE Trans. Cybern. 44(12), 2274–2287 (2014)

    Article  Google Scholar 

  25. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer Science & Business Media (2012)

    Google Scholar 

  26. Deb, K.: Multiobjective optimization using evolutionary algorithms. Comput. Optim. Appl. 39(1), 75–96 (2016)

    MathSciNet  Google Scholar 

  27. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  28. Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. (1995)

    Google Scholar 

  29. Bingul, Z.: Adaptive genetic algorithms applied to dynamic multiobjective problems. Appl. Soft Comput. 7(3), 791–799 (2007)

    Article  Google Scholar 

  30. Xu, H., Zeng, W., Zhang, D., Zeng, X.: MOEA/HD: A multiobjective evolutionary algorithm based on hierarchical decomposition. IEEE Trans. Cybern. 49(2), 517–526 (2019)

    Article  Google Scholar 

  31. Yuan, X., et al.: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm. Energy 122, 70–82 (2017)

    Article  Google Scholar 

  32. Wu, Y., Wu, B., Ying, W., Xie, Y., He, W.: Global Pareto optimality of cone decomposition of bi-objective optimization. In: Proceedings of the IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), pp. 309–314 (2017)

    Google Scholar 

  33. Jalil, H., Ying, W., Li, K.: Theoretical analysis and empirical validation of the conical area evolutionary algorithm for bi-objective optimization. Accepted, IEEE Trans. Evol. Comput. (2021)

    Google Scholar 

  34. Li, K., et al.: Meta-heuristic optimization-based two-stage residential load pattern clustering approach considering intra-cluster compactness and inter-cluster separation. IEEE Trans. Ind. Appl. 56(4), 3375–3384 (2020)

    Article  Google Scholar 

  35. Bezdek, J.C., James, C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer Science & Business Media (2013)

    Google Scholar 

  36. Rhee, H.S., Oh, K.W.: A validity measure for fuzzy clustering and its use in selecting an optimal number of clusters. In: Proceedings of IEEE 5th International Fuzzy Systems, vol. 2, pp. 1020–1025. IEEE (1996)

    Google Scholar 

  37. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Informat. 26(4), 30–45 (1996)

    Google Scholar 

  38. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(3), 1–15 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Berlin, Germany (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  40. Liu, M., Jiang, X., Kot, A.C.: A multi-prototype clustering algorithm. Pattern Recogn. 42(5), 689–698 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Key Field Special Project of Guangdong Provincial Department of Education with No.2021ZDZX1029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangshun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jalil, H., Li, K. (2022). Image Segmentation by Improved Conical Area Evolutionary Algorithm. In: Li, K., Liu, Y., Wang, W. (eds) Exploration of Novel Intelligent Optimization Algorithms. ISICA 2021. Communications in Computer and Information Science, vol 1590. Springer, Singapore. https://doi.org/10.1007/978-981-19-4109-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4109-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4108-5

  • Online ISBN: 978-981-19-4109-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics