Skip to main content

Advances in Diagnosis of Latent TB Infection: What Is the Latest Approach to Diagnose Latent TB Infection to Prevent TB?

  • Chapter
  • First Online:
Pulmonary Tuberculosis and Its Prevention

Abstract

Both types of tests for the diagnosis of latent tuberculosis infection (LTBI), the tuberculin skin test (TST) and interferon-gamma release assays (IGRAs), rely on detecting evidence of cell-mediated immunity to M. tuberculosis antigens. If testing is positive and there are no symptoms, radiographic or microbiologic evidence of TB disease, the patient is typically considered to have LTBI. Advantages of the TST include low cost, ease of administration, no lab requirement, and adjustable interpretation cut-off per individual LTBI risks. Advantages of IGRAs include requiring a single visit, higher specificity compared to the TST, and likely modestly improved sensitivity (particularly with immunocompromised individuals). The TST and IGRA have only poor-to-fair concordance. Both the TST and IGRAs have significant shortcomings. They cannot discriminate asymptomatic infection from past infection, identify individuals at elevated risk of TB disease, or be used to assess response to preventative therapy. A variety of novel technologies are in different phases of investigation, development, or clinical use that may help address these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pai M, Sotgiu G. Diagnostics for latent TB infection: incremental, not transformative progress. Eur Respir J. 2016;47(3):704–6. https://doi.org/10.1183/13993003.01910-2015.

    Article  PubMed  Google Scholar 

  2. Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, et al. What we know about tuberculosis transmission: an overview. J Infect Dis. 2017;216(Suppl 6):S629–S35. https://doi.org/10.1093/infdis/jix362.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Patterson B, Wood R. Is cough really necessary for TB transmission? Tuberculosis. 2019;117:31–5. https://doi.org/10.1016/j.tube.2019.05.003.

    Article  PubMed  Google Scholar 

  4. Torrelles JB, Schlesinger LS. Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol. 2017;25(8):688–97. https://doi.org/10.1016/j.tim.2017.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12(8):581–91. https://doi.org/10.1038/nri3259.

    Article  CAS  PubMed  Google Scholar 

  6. Kornfeld H, Mancino G, Colizzi V. The role of macrophage cell death in tuberculosis. Cell Death Differ. 1999;6(1):71–8. https://doi.org/10.1038/sj.cdd.4400454.

    Article  CAS  PubMed  Google Scholar 

  7. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2(1):16076. https://doi.org/10.1038/nrdp.2016.76.

    Article  PubMed  Google Scholar 

  8. Mack U, Migliori GB, Sester M, Rieder HL, Ehlers S, Goletti D, et al. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur Respir J. 2009;33(5):956–73. https://doi.org/10.1183/09031936.00120908.

    Article  CAS  PubMed  Google Scholar 

  9. Esmail H, Barry CE, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130437. https://doi.org/10.1098/rstb.2013.0437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12(5):352–66. https://doi.org/10.1038/nri3211.

    Article  CAS  PubMed  Google Scholar 

  11. Maher D. Chapter 13. The natural history of Mycobacterium tuberculosis infection in adults. In: Simon H, Schaaf AZ, editors. Tuberculosis: a comprehensive clinical reference. Philadelphia: Saunders; 2009. p. 129–32.

    Chapter  Google Scholar 

  12. Orme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol. 2015;16(1):57–63. https://doi.org/10.1038/ni.3048.

    Article  CAS  PubMed  Google Scholar 

  13. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis. 2017;64(2):e1–e33. https://doi.org/10.1093/cid/ciw694.

    Article  PubMed  Google Scholar 

  14. Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev. 2018;31(4):e00021–18. https://doi.org/10.1128/cmr.00021-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Actor JK. Introductory immunology. In: Basic concepts for interdisciplinary applications. 2nd ed. Atlanta, GA: Elsevier; 2019.

    Google Scholar 

  16. Munoz L, Santin M. Prevention and management of tuberculosis in transplant recipients: from guidelines to clinical practice. Transplantation. 2016;100(9):1840–52. https://doi.org/10.1097/TP.0000000000001224.

    Article  CAS  PubMed  Google Scholar 

  17. Pai M, Behr M. Latent Mycobacterium tuberculosis infection and interferon-gamma release assays. Microbiol Spectr. 2016;4(5) https://doi.org/10.1128/microbiolspec.

  18. Arend SM, Meijgaarden KEV, Boer KD, Palou ECD, Soolingen DV, Ottenhoff THM, et al. Tuberculin skin testing and in vitro T cell responses to ESAT-6 and culture filtrate protein 10 after infection with Mycobacterium marinum or M. kansasii. J Infect Dis. 2002;186(12):1797–807. https://doi.org/10.1086/345760.

    Article  CAS  PubMed  Google Scholar 

  19. Ghassemieh BJ, Attia EF, Koelle DM, Mancuso JD, Narita M, Horne DJ. Latent tuberculosis infection test agreement in the National Health and Nutrition Examination Survey. Am J Respir Crit Care Med. 2016;194(4):493–500. https://doi.org/10.1164/rccm.201508-1560OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dorman SE, Belknap R, Graviss EA, Reves R, Schluger N, Weinfurter P, et al. Interferon-gamma release assays and tuberculin skin testing for diagnosis of latent tuberculosis infection in healthcare workers in the United States. Am J Respir Crit Care Med. 2014;189(1):77–87. https://doi.org/10.1164/rccm.201302-0365OC.

    Article  PubMed  Google Scholar 

  21. Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20. https://doi.org/10.1128/CMR.00034-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iseman MD. A clinician’s guide to tuberculosis. Philadelphia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  23. Bates JH. Tuberculosis. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  24. Yang H, Kruh-Garcia NA, Dobos KM. Purified protein derivatives of tuberculin—past, present, and future. FEMS Immunol Med Microbiol. 2012;66(3):273–80. https://doi.org/10.1111/j.1574-695X.2012.01002.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gillenwater KA, Sapp SC, Pearce K, Siberry GK. Increase in tuberculin skin test converters among health care workers after a change from Tubersol to Aplisol. Am J Infect Control. 2006;34(10):651–4. https://doi.org/10.1016/j.ajic.2006.05.288.

    Article  PubMed  Google Scholar 

  26. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1376–95. https://doi.org/10.1164/ajrccm.161.4.16141.

  27. Huebner RE, Schein MF, Bass JB Jr. The tuberculin skin test. Clin Infect Dis. 1993;17(6):968–75. https://doi.org/10.1093/clinids/17.6.968.

    Article  CAS  PubMed  Google Scholar 

  28. Menzies D. Interpretation of repeated tuberculin tests. Boosting, conversion, and reversion. Am J Respir Crit Care Med. 1999;159(1):15–21. https://doi.org/10.1164/ajrccm.159.1.9801120.

    Article  CAS  PubMed  Google Scholar 

  29. Targeted tuberculin testing and treatment of latent tuberculosis infection. Statement of the ATS and the CDC. Am J Respir Crit Care Med. 2000;161:S221–47.

    Google Scholar 

  30. Youssef E, Wooltorton E. Serious allergic reactions following tuberculin skin tests. CMAJ. 2005;173(1):34. https://doi.org/10.1503/cmaj.050710.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bunnet D, Kerleguer A, Kim P, Pean P, Phuong V, Heng N, et al. Necrotic tuberculin skin (Mantoux) test reaction: a case report and an estimation of frequency. Chest. 2015;148(1):e1–4. https://doi.org/10.1378/chest.14-2463.

    Article  PubMed  Google Scholar 

  32. Froeschle JE, Ruben FL, Bloh AM. Immediate hypersensitivity reactions after use of tuberculin skin testing. Clin Infect Dis. 2002;34(1):E12–3. https://doi.org/10.1086/324587.

    Article  PubMed  Google Scholar 

  33. Tager IB, Kalaidjian R, Baldini L, Rocklin RE. Variability in the intradermal and in vitro lymphocyte responses to PPD in patients receiving isoniazid chemoprophylaxis. Am Rev Respir Dis. 1985;131(2):214–20. https://doi.org/10.1164/arrd.1985.131.2.214.

    Article  CAS  PubMed  Google Scholar 

  34. Schatz M, Patterson R, Kloner R, Falk J. The prevalence of tuberculosis and positive tuberculin skin tests in a steroid-treated asthmatic population. Ann Intern Med. 1976;84(3):261–5. https://doi.org/10.7326/0003-4819-84-3-261.

    Article  CAS  PubMed  Google Scholar 

  35. Belard E, Semb S, Ruhwald M, Werlinrud AM, Soborg B, Jensen FK, et al. Prednisolone treatment affects the performance of the QuantiFERON gold in-tube test and the tuberculin skin test in patients with autoimmune disorders screened for latent tuberculosis infection. Inflamm Bowel Dis. 2011;17(11):2340–9. https://doi.org/10.1002/ibd.21605.

    Article  PubMed  Google Scholar 

  36. Bovornkitti S, Kangsadal P, Sathirapat P, Oonsombatti P. Reversion and reconversion rate of tuberculin skin reactions in correction with the use of prednisone. Dis Chest. 1960;38:51–5. https://doi.org/10.1378/chest.38.1.51.

    Article  CAS  PubMed  Google Scholar 

  37. Agarwal S, Das SK, Agarwal GG, Srivastava R. Steroids decrease prevalence of positive tuberculin skin test in rheumatoid arthritis: implications on Anti-TNF therapies. Interdiscip Perspect Infect Dis. 2014;2014:430134. https://doi.org/10.1155/2014/430134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stout JE, Wu Y, Ho CS, Pettit AC, Feng PJ, Katz DJ, et al. Evaluating latent tuberculosis infection diagnostics using latent class analysis. Thorax. 2018; https://doi.org/10.1136/thoraxjnl-2018-211715.

  39. Farhat M, Greenaway C, Pai M, Menzies D. False-positive tuberculin skin tests: what is the absolute effect of BCG and non-tuberculous mycobacteria? Int J Tuberc Lung Dis. 2006;10(11):1192–204.

    CAS  PubMed  Google Scholar 

  40. Thompson NJ, Glassroth JL, Snider DE Jr, Farer LS. The booster phenomenon in serial tuberculin testing. Am Rev Respir Dis. 1979;119(4):587–97. https://doi.org/10.1164/arrd.1979.119.4.587.

    Article  CAS  PubMed  Google Scholar 

  41. Wood PR, Corner LA, Plackett P. Development of a simple, rapid in vitro cellular assay for bovine tuberculosis based on the production of gamma interferon. Res Vet Sci. 1990;49(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  42. Streeton JA, Desem N, Jones SL. Sensitivity and specificity of a gamma interferon blood test for tuberculosis infection. Int J Tuberc Lung Dis. 1998;2(6):443–50.

    CAS  PubMed  Google Scholar 

  43. Lalvani A. Diagnosing tuberculosis infection in the 21st century: new tools to tackle an old enemy. Chest. 2007;131(6):1898–906. https://doi.org/10.1378/chest.06-2471.

    Article  PubMed  Google Scholar 

  44. Chiacchio T, Petruccioli E, Vanini V, Cuzzi G, Pinnetti C, Sampaolesi A, et al. Polyfunctional T-cells and effector memory phenotype are associated with active TB in HIV-infected patients. J Infect. 2014;69(6):533–45. https://doi.org/10.1016/j.jinf.2014.06.009.

    Article  PubMed  Google Scholar 

  45. Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, et al. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol. 2013;43(6):1568–77. https://doi.org/10.1002/eji.201243262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nikolova M, Markova R, Drenska R, Muhtarova M, Todorova Y, Dimitrov V, et al. Antigen-specific CD4- and CD8-positive signatures in different phases of Mycobacterium tuberculosis infection. Diagn Microbiol Infect Dis. 2013;75(3):277–81. https://doi.org/10.1016/j.diagmicrobio.2012.11.023.

    Article  CAS  PubMed  Google Scholar 

  47. QuantiFERON-TB Gold Plus (QFT-Plus) ELISA Package Insert. Hilden: Qiagen; 2015.

    Google Scholar 

  48. Oxford Immunotec. T-SPOT.TB Package Insert US version 6. Available at https://www.T-SPOT.com/wp-content/uploads/2021/04/TB-PI-US-0001-V9.pdf. Accessed on 10/10/2018.

  49. https://www.accessdata.fda.gov/cdrh_docs/pdf7/p070006b.pdf

  50. Banach DB, Harris TG. Indeterminate QuantiFERON(R)-TB Gold results in a public health clinic setting. Int J Tuberc Lung Dis. 2011;15(12):1623–30. https://doi.org/10.5588/ijtld.11.0017.

    Article  CAS  PubMed  Google Scholar 

  51. Sharninghausen JC, Shapiro AE, Koelle DM, Kim HN. Risk factors for indeterminate outcome on interferon gamma release assay in non-US-born persons screened for latent tuberculosis infection. Open Forum Infect Dis. 2018;5(8):ofy184. https://doi.org/10.1093/ofid/ofy184.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Meier NR, Volken T, Geiger M, Heininger U, Tebruegge M, Ritz N. Risk factors for indeterminate interferon-gamma release assay for the diagnosis of tuberculosis in children—a systematic review and meta-analysis. Front Pediatr. 2019;7:208. https://doi.org/10.3389/fped.2019.00208.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fabre V, Shoham S, Page KR, Shah M. High proportion of indeterminate QuantiFERON-TB gold in-tube results in an inpatient population is related to host factors and preanalytical steps. Open Forum Infect Dis. 2014;1(2):ofu088. https://doi.org/10.1093/ofid/ofu088.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huang CT, Ruan SY, Tsai YJ, Kuo PH, Ku SC, Lee PL, et al. Effects of acute critical illnesses on the performance of interferon-gamma release assay. Sci Rep. 2016;6:19972. https://doi.org/10.1038/srep19972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mandalakas AM, Highsmith HY, Harris NM, Pawlicka A, Kirchner HL. T-SPOT.TB performance in routine pediatric practice in a low TB burden setting. Pediatr Infect Dis J. 2018;37(4):292–7. https://doi.org/10.1097/INF.0000000000001792.

    Article  PubMed  Google Scholar 

  56. Santin M, Munoz L, Rigau D. Interferon-gamma release assays for the diagnosis of tuberculosis and tuberculosis infection in HIV-infected adults: a systematic review and meta-analysis. PLoS One. 2012;7(3):e32482. https://doi.org/10.1371/journal.pone.0032482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Banaei N, Gaur RL, Pai M. Interferon gamma release assays for latent tuberculosis: what are the sources of variability? J Clin Microbiol. 2016;54(4):845–50. https://doi.org/10.1128/JCM.02803-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tagmouti S, Slater M, Benedetti A, Kik SV, Banaei N, Cattamanchi A, et al. Reproducibility of interferon gamma (IFN-gamma) release Assays. A systematic review. Ann Am Thorac Soc. 2014;11(8):1267–76. https://doi.org/10.1513/AnnalsATS.201405-188OC.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Metcalfe JZ, Cattamanchi A, McCulloch CE, Lew JD, Ha NP, Graviss EA. Test variability of the QuantiFERON-TB gold in-tube assay in clinical practice. Am J Respir Crit Care Med. 2013;187(2):206–11. https://doi.org/10.1164/rccm.201203-0430OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamasue M, Komiya K, Usagawa Y, Umeki K, Nureki SI, Ando M, et al. Factors associated with false negative interferon-gamma release assay results in patients with tuberculosis: a systematic review with meta-analysis. Sci Rep. 2020;10(1):1607. https://doi.org/10.1038/s41598-020-58459-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Zyl-Smit RN, Zwerling A, Dheda K, Pai M. Within-subject variability of interferon-g assay results for tuberculosis and boosting effect of tuberculin skin testing: a systematic review. PLoS One. 2009;4(12):e8517. https://doi.org/10.1371/journal.pone.0008517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Slater ML, Welland G, Pai M, Parsonnet J, Banaei N. Challenges with QuantiFERON-TB Gold assay for large-scale, routine screening of U.S. healthcare workers. Am J Respir Crit Care Med. 2013;188(8):1005–10. https://doi.org/10.1164/rccm.201305-0831OC.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gao L, Lu W, Bai L, Wang X, Xu J, Catanzaro A, et al. Latent tuberculosis infection in rural China: baseline results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis. 2015;15(3):310–9. https://doi.org/10.1016/S1473-3099(14)71085-0.

    Article  PubMed  Google Scholar 

  64. Gao L, Li X, Liu J, Wang X, Lu W, Bai L, et al. Incidence of active tuberculosis in individuals with latent tuberculosis infection in rural China: follow-up results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis. 2017;17(10):1053–61. https://doi.org/10.1016/S1473-3099(17)30402-4.

    Article  PubMed  Google Scholar 

  65. Abubakar I, Drobniewski F, Southern J, Sitch AJ, Jackson C, Lipman M, et al. Prognostic value of interferon-gamma release assays and tuberculin skin test in predicting the development of active tuberculosis (UK PREDICT TB): a prospective cohort study. Lancet Infect Dis. 2018;18(10):1077–87. https://doi.org/10.1016/S1473-3099(18)30355-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Andrews JR, Nemes E, Tameris M, Landry BS, Mahomed H, McClain JB, et al. Serial QuantiFERON testing and tuberculosis disease risk among young children: an observational cohort study. Lancet Respir Med. 2017;5(4):282–90. https://doi.org/10.1016/S2213-2600(17)30060-7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gupta RK, Lipman M, Jackson C, Sitch AJ, Southern J, Drobniewski F, et al. Quantitative IFN-gamma release assay and tuberculin skin test results to predict incident tuberculosis. A Prospective Cohort Study. Am J Respir Crit Care Med. 2020;201(8):984–91. https://doi.org/10.1164/rccm.201905-0969OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Winje BA, White R, Syre H, Skutlaberg DH, Oftung F, Mengshoel AT, et al. Stratification by interferon-gamma release assay level predicts risk of incident TB. Thorax. 2018; https://doi.org/10.1136/thoraxjnl-2017-211147.

  69. Zellweger JP, Sotgiu G, Block M, Dore S, Altet N, Blunschi R, et al. Risk assessment of tuberculosis in contacts by IFN-gamma release assays. A Tuberculosis Network European Trials Group Study. Am J Respir Crit Care Med. 2015;191(10):1176–84. https://doi.org/10.1164/rccm.201502-0232OC.

    Article  CAS  PubMed  Google Scholar 

  70. Ledesma JR, Ma J, Zheng P, Ross JM, Vos T, Kyu HH. Interferon-gamma release assay levels and risk of progression to active tuberculosis: a systematic review and dose-response meta-regression analysis. BMC Infect Dis. 2021;21(1):467. https://doi.org/10.1186/s12879-021-06141-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nemes E, Rozot V, Geldenhuys H, Bilek N, Mabwe S, Abrahams D, et al. Optimization and interpretation of serial QuantiFERON testing to measure acquisition of Mycobacterium tuberculosis infection. Am J Respir Crit Care Med. 2017;196(5):638–48. https://doi.org/10.1164/rccm.201704-0817OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jonsson J, Westman A, Bruchfeld J, Sturegard E, Gaines H, Schon T. A borderline range for Quantiferon Gold In-Tube results. PLoS One. 2017;12(11):e0187313. https://doi.org/10.1371/journal.pone.0187313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee MY, Kang SY, Lee WI, Kim MH. Introduction of a borderline range for the interpretation of QuantiFERON-TB gold In-tube results in Korean healthcare workers. Clin Lab. 2020;66(10) https://doi.org/10.7754/Clin.Lab.2020.200255.

  74. Nienhaus A, Costa JT. Screening for tuberculosis and the use of a borderline zone for the interpretation of the interferon-gamma release assay (IGRA) in Portuguese healthcare workers. J Occup Med Toxicol. 2013;8(1):1. https://doi.org/10.1186/1745-6673-8-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pollock NR, Kashino SS, Napolitano DR, Sloutsky A, Joshi S, Guillet J, et al. Evaluation of the effect of treatment of latent tuberculosis infection on QuantiFERON-TB gold assay results. Infect Control Hosp Epidemiol. 2009;30(4):392–5. https://doi.org/10.1086/596606.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Johnson JL, Geldenhuys H, Thiel BA, Toefy A, Suliman S, Pienaar B, et al. Effect of isoniazid therapy for latent TB infection on QuantiFERON-TB gold in-tube responses in adults with positive tuberculin skin test results in a high TB incidence area: a controlled study. Chest. 2014;145(3):612–7. https://doi.org/10.1378/chest.13-1232.

    Article  CAS  PubMed  Google Scholar 

  77. Adetifa IM, Ota MO, Jeffries DJ, Lugos MD, Hammond AS, Battersby NJ, et al. Interferon-gamma ELISPOT as a biomarker of treatment efficacy in latent tuberculosis infection: a clinical trial. Am J Respir Crit Care Med. 2013;187(4):439–45. https://doi.org/10.1164/rccm.201208-1352OC.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang H, Xin H, Li X, Li H, Li M, Feng B, et al. Reversion of QuantiFERON-TB Gold In-Tube test in individuals with and without prophylactic treatment for latent tuberculosis infection: a systematic review and meta-analysis. J Infect. 2018;77(4):276–82. https://doi.org/10.1016/j.jinf.2018.04.009.

    Article  PubMed  Google Scholar 

  79. Clifford V, He Y, Zufferey C, Connell T, Curtis N. Interferon gamma release assays for monitoring the response to treatment for tuberculosis: a systematic review. Tuberculosis (Edinb). 2015;95(6):639–50. https://doi.org/10.1016/j.tube.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  80. American Academy of Pediatrics. Committee on Infectious Diseases. Red book: 2021 report of the Committee on Infectious Diseases. 32nd ed. Elk Grove Village, IL: American Academy of Pediatrics; 2021.

    Google Scholar 

  81. Ahmed A, Feng PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, et al. Interferon-gamma release assays in children <15 years of age. Pediatrics. 2020;145(1):e20191930. https://doi.org/10.1542/peds.2019-1930.

    Article  PubMed  Google Scholar 

  82. Malhame I, Cormier M, Sugarman J, Schwartzman K. Latent tuberculosis in pregnancy: a systematic review. PLoS One. 2016;11(5):e0154825. https://doi.org/10.1371/journal.pone.0154825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mathad JS, Bhosale R, Sangar V, Mave V, Gupte N, Kanade S, et al. Pregnancy differentially impacts performance of latent tuberculosis diagnostics in a high-burden setting. PLoS One. 2014;9(3):e92308. https://doi.org/10.1371/journal.pone.0092308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mathad JS, Bhosale R, Balasubramanian U, Kanade S, Mave V, Suryavanshi N, et al. Quantitative IFN-gamma and IL-2 response associated with latent tuberculosis test discordance in HIV-infected pregnant women. Am J Respir Crit Care Med. 2016;193(12):1421–8. https://doi.org/10.1164/rccm.201508-1595OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. LaCourse SM, Cranmer LM, Matemo D, Kinuthia J, Richardson BA, Horne DJ, et al. Effect of pregnancy on interferon gamma release assay and tuberculin skin test detection of latent TB infection among HIV-infected women in a high burden setting. J Acquir Immune Defic Syndr. 2017;75(1):128–36. https://doi.org/10.1097/QAI.0000000000001298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sosa LE, Njie GJ, Lobato MN, Bamrah Morris S, Buchta W, Casey ML, et al. Tuberculosis screening, testing, and treatment of U.S. health care personnel: recommendations from the National Tuberculosis Controllers Association and CDC, 2019. MMWR Morb Mortal Wkly Rep. 2019;68(19):439–43. https://doi.org/10.15585/mmwr.mm6819a3.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pettit AC, Stout JE, Belknap R, Benson CA, Seraphin MN, Lauzardo M, et al. Optimal testing choice and diagnostic strategies for latent tuberculosis infection among U.S.-born people living with HIV. Clin Infect Dis. 2020; https://doi.org/10.1093/cid/ciaa1135.

  88. Campbell JR, Winters N, Menzies D. Absolute risk of tuberculosis among untreated populations with a positive tuberculin skin test or interferon-gamma release assay result: systematic review and meta-analysis. BMJ. 2020;368:m549. https://doi.org/10.1136/bmj.m549.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Theodoropoulos N, Lanternier F, Rassiwala J, McNatt G, Preczewski L, DeMayo E, et al. Use of the QuantiFERON-TB Gold interferon-gamma release assay for screening transplant candidates: a single-center retrospective study. Transpl Infect Dis. 2012;14(1):1–8. https://doi.org/10.1111/j.1399-3062.2011.00666.x.

    Article  CAS  PubMed  Google Scholar 

  90. Nasiri MJ, Pormohammad A, Goudarzi H, Mardani M, Zamani S, Migliori GB, et al. Latent tuberculosis infection in transplant candidates: a systematic review and meta-analysis on TST and IGRA. Infection. 2019;47(3):353–61. https://doi.org/10.1007/s15010-019-01285-7.

    Article  PubMed  Google Scholar 

  91. Ferguson TW, Tangri N, Macdonald K, Hiebert B, Rigatto C, Sood MM, et al. The diagnostic accuracy of tests for latent tuberculosis infection in hemodialysis patients: a systematic review and meta-analysis. Transplantation. 2015;99(5):1084–91. https://doi.org/10.1097/TP.0000000000000451.

    Article  CAS  PubMed  Google Scholar 

  92. Horne DJ, Narita M, Spitters CL, Parimi S, Dodson S, Limaye AP. Challenging issues in tuberculosis in solid organ transplantation. Clin Infect Dis. 2013;57(10):1473–82. https://doi.org/10.1093/cid/cit488.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Subramanian A, Dorman S, Practice ASTIDCo. Mycobacterium tuberculosis in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S57–62. https://doi.org/10.1111/j.1600-6143.2009.02894.x.

    Article  PubMed  Google Scholar 

  94. https://www.ecdc.europa.eu/en/publications-data/programmatic-management-latent-tuberculosis-infection-european-union

  95. Ruhwald M, Aggerbeck H, Gallardo RV, Hoff ST, Villate JI, Borregaard B, et al. Safety and efficacy of the C-Tb skin test to diagnose Mycobacterium tuberculosis infection, compared with an interferon γ release assay and the tuberculin skin test: a phase 3, double-blind, randomised, controlled trial. Lancet Respir Med. 2017;5(4):259–68. https://doi.org/10.1016/s2213-2600(16)30436-2.

    Article  CAS  PubMed  Google Scholar 

  96. Slogotskaya L, Bogorodskaya E, Ivanova D, Sevostyanova T. Comparative sensitivity of the test with tuberculosis recombinant allergen, containing ESAT6-CFP10 protein, and Mantoux test with 2 TU PPD-L in newly diagnosed tuberculosis children and adolescents in Moscow. PLoS One. 2018;13(12):e0208705. https://doi.org/10.1371/journal.pone.0208705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li F, Xu M, Qin C, Xia L, Xiong Y, Xi X, et al. Recombinant fusion ESAT6-CFP10 immunogen as a skin test reagent for tuberculosis diagnosis: an open-label, randomized, two-centre phase 2a clinical trial. Clin Microbiol Infect. 2016;22(10):889.e9–889.e16. https://doi.org/10.1016/j.cmi.2016.07.015.

    Article  CAS  PubMed  Google Scholar 

  98. Badaro R, Machado BAS, Duthie MS, Araujo-Neto CA, Pedral-Sampaio D, Nakatani M, et al. The single recombinant M. tuberculosis protein DPPD provides enhanced performance of skin testing among HIV-infected tuberculosis patients. Amb Express. 2020;10(1):133. https://doi.org/10.1186/s13568-020-01068-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Krutikov M, Faust L, Nikolayevskyy V, Hamada Y, Gupta RK, Cirillo D, et al. The diagnostic performance of novel skin-based in-vivo tests for tuberculosis infection compared with purified protein derivative tuberculin skin tests and blood-based in vitro interferon-γ release assays: a systematic review and meta-analysis. Lancet Infect Dis. 2021;22:250–64. https://doi.org/10.1016/s1473-3099(21)00261-9. (Eur Respir J 37 2011)

    Article  CAS  PubMed  Google Scholar 

  100. Aggerbeck H, Giemza R, Joshi P, Tingskov PN, Hoff ST, Boyle J, et al. Randomised clinical trial investigating the specificity of a novel skin test (C-Tb) for diagnosis of M. tuberculosis Infection. PLoS One. 2013;8(5):e64215. https://doi.org/10.1371/journal.pone.0064215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bella CD, Spinicci M, Alnwaisri HFM, Bartalesi F, Tapinassi S, Mencarini J, et al. LIOFeron®TB/LTBI: a novel and reliable test for LTBI and tuberculosis. Int J Infect Dis. 2020;91:177–81. https://doi.org/10.1016/j.ijid.2019.12.012.

    Article  CAS  PubMed  Google Scholar 

  102. Dong Y, Demaria S, Sun X, Santori FR, Jesdale BM, Groot ASD, et al. HLA-A2-restricted CD8 + -cytotoxic-T-cell responses to novel epitopes in Mycobacterium tuberculosis superoxide dismutase, alanine dehydrogenase, and glutamine synthetase. Infect Immun. 2004;72(4):2412–5. https://doi.org/10.1128/iai.72.4.2412-2415.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Serra-Vidal MM, Latorre I, Franken KLCM, Díaz J, Souza-Galvão MLD, Casas I, et al. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis. Front Microbiol. 2014;5:517. https://doi.org/10.3389/fmicb.2014.00517.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Coppola M, Meijgaarden KEV, Franken KLMC, Commandeur S, Dolganov G, Kramnik I, et al. New genome-wide algorithm identifies novel in-vivo expressed Mycobacterium tuberculosis antigens inducing human T-cell responses with classical and unconventional cytokine profiles. Sci Rep. 2016;6(1):37793. https://doi.org/10.1038/srep37793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meier NR, Jacobsen M, Ottenhoff THM, Ritz N. A systematic review on novel Mycobacterium tuberculosis antigens and their discriminatory potential for the diagnosis of latent and active tuberculosis. Front Immunol. 2018;9:2476. https://doi.org/10.3389/fimmu.2018.02476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Latorre I, Domínguez J. Dormancy antigens as biomarkers of latent tuberculosis infection. Ebiomedicine. 2015;2(8):790–1. https://doi.org/10.1016/j.ebiom.2015.06.017.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ruhwald M, Thurah LD, Kuchaka D, Zaher MR, Salman AM, Abdel-Ghaffar A-R, et al. Introducing the ESAT-6 free IGRA, a companion diagnostic for TB vaccines based on ESAT-6. Sci Rep. 2017;7(1):45969. https://doi.org/10.1038/srep45969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Villar-Hernandez R, Blauenfeldt T, Garcia-Garcia E, Muriel-Moreno B, De Souza-Galvao ML, Millet JP, et al. Diagnostic benefits of adding EspC, EspF and Rv2348-B to the QuantiFERON Gold In-tube antigen combination. Sci Rep. 2020;10(1):13234. https://doi.org/10.1038/s41598-020-70204-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sudbury EL, Clifford V, Messina NL, Song R, Curtis N. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: a systematic review. J Infect. 2020;81(6):873–81. https://doi.org/10.1016/j.jinf.2020.09.032.

    Article  CAS  PubMed  Google Scholar 

  110. Ruhwald M, Bjerregaard-Andersen M, Rabna P, Eugen-Olsen J, Ravn P. IP-10, MCP-1, MCP-2, MCP-3, and IL-1RA hold promise as biomarkers for infection with M. tuberculosis in a whole blood based T-cell assay. BMC Res Notes. 2009;2(1):19. https://doi.org/10.1186/1756-0500-2-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ruhwald M, Aabye MG, Ravn P. IP-10 release assays in the diagnosis of tuberculosis infection: current status and future directions. Expert Rev Mol Diagn. 2014;12(2):175–87. https://doi.org/10.1586/erm.11.97.

    Article  CAS  Google Scholar 

  112. Aabye MG, Ruhwald M, PrayGod G, Jeremiah K, Faurholt-Jepsen M, Faurholt-Jepsen D, et al. Potential of interferon—inducible protein 10 in improving tuberculosis diagnosis in HIV-infected patients. Eur Respir J. 2010;36(6):1488–90. https://doi.org/10.1183/09031936.00039010.

    Article  CAS  PubMed  Google Scholar 

  113. Aabye MG, Latorre I, Diaz J, Maldonado J, Mialdea I, Eugen-Olsen J, et al. Dried plasma spots in the diagnosis of tuberculosis: IP-10 release assay on filter paper. Eur Respir J. 2013;42(2):495–503. https://doi.org/10.1183/09031936.00129412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Villar-Hernandez R, Latorre I, De Souza-Galvao ML, Jimenez MA, Ruiz-Manzano J, Pilarte J, et al. Use of IP-10 detection in dried plasma spots for latent tuberculosis infection diagnosis in contacts via mail. Sci Rep. 2019;9(1):3943. https://doi.org/10.1038/s41598-019-40778-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Robison HM, Escalante P, Valera E, Erskine CL, Auvil L, Sasieta HC, et al. Precision immunoprofiling to reveal diagnostic signatures for latent tuberculosis infection and reactivation risk stratification. Integr Biol. 2019;11(1):zyz001. https://doi.org/10.1093/intbio/zyz001.

    Article  Google Scholar 

  116. Wu J, Wang S, Lu C, Shao L, Gao Y, Zhou Z, et al. Multiple cytokine responses in discriminating between active tuberculosis and latent tuberculosis infection. Tuberculosis (Edinb). 2017;102:68–75. https://doi.org/10.1016/j.tube.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  117. Robison HM, Chapman CA, Zhou H, Erskine CL, Theel E, Peikert T, et al. Risk assessment of latent tuberculosis infection through a multiplexed cytokine biosensor assay and machine learning feature selection. Sci Rep. 2021;11(1):20544. https://doi.org/10.1038/s41598-021-99754-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Steingart KR, Henry M, Laal S, Hopewell PC, Ramsay A, Menzies D, et al. A systematic review of commercial serological antibody detection tests for the diagnosis of extrapulmonary tuberculosis. Thorax. 2007;62(10):911. https://doi.org/10.1136/thx.2006.075754.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kunnath-Velayudhan S, Salamon H, Wang H-Y, Davidow AL, Molina DM, Huynh VT, et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci. 2010;107(33):14703–8. https://doi.org/10.1073/pnas.1009080107.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Maekura R, Kitada S, Osada-Oka M, Tateishi Y, Ozeki Y, Fujicawa T, et al. Serum antibody profiles in individuals with latent Mycobacterium tuberculosis infection. Microbiol Immunol. 2019;63(3-4):130–8. https://doi.org/10.1111/1348-0421.12674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pathakumari B, Anbarasu D, Parthasarathy RT, Raja A. PpiA antigen specific immune response is a potential biomarker for latent tuberculosis infection. Tuberculosis. 2015;95(6):736–43. https://doi.org/10.1016/j.tube.2015.07.006.

    Article  CAS  PubMed  Google Scholar 

  122. Wang S, Wu J, Chen J, Gao Y, Zhang S, Zhou Z, et al. Evaluation of Mycobacterium tuberculosis-specific antibody responses for the discrimination of active and latent tuberculosis infection. Int J Infect Dis. 2018;70:1–9. https://doi.org/10.1016/j.ijid.2018.01.007.

    Article  CAS  PubMed  Google Scholar 

  123. Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A. Immunological biomarkers of tuberculosis. Nat Rev Immunol. 2011;11(5):343–54. https://doi.org/10.1038/nri2960.

    Article  CAS  PubMed  Google Scholar 

  124. Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G, et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun. 2011;12(1):15–22. https://doi.org/10.1038/gene.2010.51.

    Article  CAS  PubMed  Google Scholar 

  125. Mistry R, Cliff JM, Clayton CL, Beyers N, Mohamed YS, Wilson PA, et al. Gene-expression patterns in whole blood identify subjects at risk for recurrent tuberculosis. J Infect Dis. 2007;195(3):357–65. https://doi.org/10.1086/510397.

    Article  CAS  PubMed  Google Scholar 

  126. Gupta RK, Turner CT, Venturini C, Esmail H, Rangaka MX, Copas A, et al. Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med. 2020;8(4):395–406. https://doi.org/10.1016/s2213-2600(19)30282-6.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Suliman S, Thompson EG, Sutherland J, Weiner J, Ota MOC, Shankar S, et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am J Resp Crit Care. 2018;197(9):1198–208. https://doi.org/10.1164/rccm.201711-2340oc.

    Article  CAS  Google Scholar 

  128. Roe J, Venturini C, Gupta RK, Gurry C, Chain BM, Sun Y, et al. Blood transcriptomic stratification of short-term risk in contacts of tuberculosis. Clin Infect Dis. 2019;70(5):ciz252. https://doi.org/10.1093/cid/ciz252.

    Article  CAS  Google Scholar 

  129. Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, Mulenga H, Mbandi SK, Borate B, et al. Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial. Lancet Infect Dis. 2021;21(3):354–65. https://doi.org/10.1016/s1473-3099(20)30914-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wejse C. Transcriptomic signatures have a place in short-term prediction of incident tuberculosis. Lancet Infect Dis. 2021;21(3):299–300. https://doi.org/10.1016/S1473-3099(20)30980-4.

    Article  CAS  PubMed  Google Scholar 

  131. Gupta RK, Noursadeghi M. Blood transcriptomic biomarkers for tuberculosis screening: time to redefine our target populations? Lancet Global Heal. 2021;9(6):e736–e7. https://doi.org/10.1016/s2214-109x(21)00088-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Horne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horne, D.J., Tapley, A. (2022). Advances in Diagnosis of Latent TB Infection: What Is the Latest Approach to Diagnose Latent TB Infection to Prevent TB?. In: Saito, T., Narita, M., Daley, C.L. (eds) Pulmonary Tuberculosis and Its Prevention. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-19-3995-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3995-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3994-5

  • Online ISBN: 978-981-19-3995-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics