Skip to main content

A PSO-Optimized Fixed and a PSO-Optimized Neural Network-Adaptive Traffic Signal Controllers for Traffic Improvement in Santo Domingo, Dominican Republic

  • Conference paper
  • First Online:
Proceedings of International Conference on Communication and Computational Technologies

Abstract

Satisfying the mobility demand is one of the biggest concerns arising with the increase of urban population. With many people in the road network, traffic congestions are present in most of the cities in the world. The Distrito Nacional in Santo Domingo, capital city of Dominican Republic, is a notorious example of this phenomenon. Unfortunately, all the efforts to improve traffic experience there have had little success. With this work, two models have been developed using Particle Swarm Optimization (PSO): a PSO-Optimized Fixed Traffic Signal Control (PSO-FTSC) and a PSO-Optimized Neural Network-Adaptive Traffic Signal Control (PSO-NN-ATSC) that uses 4 neural networks to predict phase times. The intersection of 27 de Febrero Avenue corner with Winston Churchill Avenue was simulated using Simulation of Urban Mobility (SUMO), minimizing the time loss per vehicle during optimization. These models, PSO-FTSC and PSO-NN-ATSC, present reductions of 17% and 24% of mean time loss, respectively. These promising results may lead to a decrease of fuel consumption, reducing the consequent air pollution, as well as to an improvement of businesses and people’s productivity and mental health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai Q Traffic flow optimization. Mitacs. [Online]. Available: https://www.mitacs.ca/en/projects/traffic-flow-optimization-1. Accessed 18 Sept 2021

  2. Pérez Reyes R (2016) ‘Tapones’ provocan RD$48 MM en pérdidas. [Online]. Available: https://listindiario.com/economia/2016/05/11/418788/tapones-provocan-rd-48-mm-en-perdidas. Accessed 5 Dec 2021

  3. Silva RA, Adelman Z, Fry MM, West JJ (2016) The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ Health Perspect 124(11):1176–1784

    Article  Google Scholar 

  4. Qadri SSSM, Gökçe MA, Öner E (2020) State-of-art review of traffic signal control methods: challenges and opportunities. Eur Transp Res Rev 12(55)

    Google Scholar 

  5. Adacher L (2012) A global optimization approach to solve the traffic signal synchronization problem. Procedia Soc Behav Sci 54:1270–1277

    Article  Google Scholar 

  6. Alvarez Gil RP, Johanyák ZC, Kovács T (2018) Surrogate model based optimization of traffic lights. Int J Artif Intell 16(1)

    Google Scholar 

  7. Hartanti D, Aziza RN, Siswipraptini P (2019) Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic. TELKOMNIKA (Telecommun Comput Electron Control) 17:320–327

    Article  Google Scholar 

  8. Tchuitcheu WC, Bobda C, Pantho MJH (2020) Internet of smart-cameras for traffic lights optimization in smart cities. Internet Things 11

    Google Scholar 

  9. Araghi S, Khosravi A, Creighton D (2015) Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network. Expert Syst Appl 42(9):4422–4431

    Article  Google Scholar 

  10. Araghi S, Khosravi A, Creighton D, Nahavandi S (2017) Influence of meta-heuristic optimization on the performance of adaptive interval type2-fuzzy traffic signal controllers. Expert Syst Appl 71:493–503

    Article  Google Scholar 

  11. García-Nieto J, Olivera AC, Alba E (2013) Optimal cycle program of traffic lights with particle swarm optimization. IEEE Trans Evol Comput 17(6):823–839

    Article  Google Scholar 

  12. Malecki K, Pietruszka P, Iwan S (2017) Comparative analysis of selected algorithms in the process of optimization of traffic lights. In: Asian conference on intelligent information and database systems, vol 10192, pp 497–506

    Google Scholar 

  13. Zhang H, Yuan H, Chen Y, Yu W, Wang C, Wang J, Gao Y (2021) Traffic light optimization based on modified Webster function. J Adv Transp 2021

    Google Scholar 

  14. Yu D, Tian X, Xing X, Gao S (2016) Signal timing optimization based on fuzzy compromise programming for isolated signalized intersection. Math Probl Eng 2016

    Google Scholar 

  15. Nguyen PTM, Passow BN, Yang Y (2016) Improving anytime behavior for traffic signal control optimization based on NSGA-II and local search. In: 2016 International Joint conference on neural networks (IJCNN), Vancouver

    Google Scholar 

  16. Zheng L, Xu C, Jin PJ, Ran B (2019) Network-wide signal timing stochastic simulation optimization with environmental concerns. Appl Soft Comput 77:678–687

    Article  Google Scholar 

  17. Bernas M, Placzek B, Smyla J (2019) A neuroevolutionary approach to controlling traffic signals based on data from sensor network. Sensors 19(8):1776

    Article  Google Scholar 

  18. Sanchez-Medina JJ, Galan-Moreno MJ, Rubio-Royo E (2010) Traffic signal optimization in “La Almozara” district in Saragossa under congestion conditions, using genetic algorithms, traffic microsimulation, and cluster computing. IEEE Trans Intell Transp Syst 11(1):132–141

    Article  Google Scholar 

  19. Inoue D, Okada A, Matsumori T, Aihara K, Yoshida H (2021) Traffic signal optimization on a square lattice with quantum annealing. Sci Rep 11(3303)

    Google Scholar 

  20. Ferrer J, López-Ibáñez M, Alba E (2019) Reliable simulation-optimization of traffic lights in a real-world city. Appl Soft Comput 78:697–711

    Article  Google Scholar 

  21. López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Birattari M, Stüztzle T (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58

    Google Scholar 

  22. Chu T, Wang J, Codecà L, Li Z (2020) Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans Intell Transp Syst 21(3):1086–1095

    Article  Google Scholar 

  23. Ozan C, Baskan O, Haldenbilen S, Ceylan H (2015) A modified reinforcement learning algorithm for solving coordinated signalized networks. Transp Res Part C: Emerg Technol 54:40–55

    Article  Google Scholar 

  24. Genders W, Razavi S (2019) An open-source framework for adaptive traffic signal control. J Trans Intell Transp Syst X(X)

    Google Scholar 

  25. Samra S, El-Mahdi A, Wada Y (2015) A linear time and space algorithm for optimal traffic-signal duration at an intersection. IEEE Trans Intell Transp Syst 16(1):387–395

    Article  Google Scholar 

  26. He Q, Kamineni R, Zhang Z (2016) Traffic signal control with partial grade separation for oversaturated conditions. Transp Res Part C: Emerg Technol 71:267–283

    Article  Google Scholar 

  27. Mehrabipour M, Hajbabaie A (2017) A cell-based distributed-coordinated approach for network-level signal timing optimization. Comput-Aided Civ Infrastruct Eng 32(7):599–616

    Google Scholar 

  28. Yan H, He F, Lin X, Yu J, Li M, Wang Y (2019) Network-level multiband signal coordination scheme based on vehicle trajectory data. Transp Res Part C: Emerg Technol 107:266–286

    Article  Google Scholar 

  29. Mohebifard R, Hajbabaie A (2019) Optimal network-level traffic signal control: a benders decomposition-based solution algorithm. Transp Res Part B: Methodol 121:252–274

    Article  Google Scholar 

  30. Yu H, Ma R, Zhang HM (2018) Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network. Transp Res Part B: Methodol 110:302–325

    Article  Google Scholar 

  31. Yu C, Ma W, Han K, Yang X (2017) Optimization of vehicle and pedestrian signals at isolated intersections. Transp Res Part B: Methodol 98:135–153

    Article  Google Scholar 

  32. World Population Review (2021) Dominican Republic population 2021 (Live). World Population Review. [Online]. Available: https://worldpopulationreview.com/countries/dominican-republic-population. Accessed 13 Oct 2021

  33. Inter-American Development Bank (2020) Support program for mobility, ground transportation and road safety in the Dominican Republic (IADB-DR-L1132). [Online]. Available: https://ewsdata.rightsindevelopment.org/projects/dr-l1132-support-program-for-mobility-ground-transportatio/. Accessed 13 Oct 2021

  34. Ravelo JL (2018) Cities and NCDs: In Santo Domingo, cars cause more than congestion. Devex. [Online]. Available: https://www.devex.com/news/cities-and-ncds-in-santo-domingo-cars-cause-more-than-congestion-92895. Accessed 13 Oct 2021

  35. Edelman DJ (2019) Managing the urban environment of Santo Domingo, the Dominican Republic. Curr Urban Stud 7(1):76–142

    Article  Google Scholar 

  36. Pérez Orsini J (2018) Los diez puntos críticos del tránsito del Distrito Nacional en las horas pico. [Online]. Available: https://www.diariolibre.com/actualidad/ciudad/los-diez-puntos-criticos-del-transito-del-distrito-nacional-en-las-horas-pico-ID10641393. Accessed 13 Oct 2021

  37. Instituto Tecnológico de Santo Domingo (2018) How to reduce vehicular traffic jams? [Online]. Available: https://www.intec.edu.do/en/prensa/notas-de-prensa/item/como-reducir-los-embotellamientos-vehiculares. Accessed 13 Oct 2021

  38. Diario L (2020) Intrant instala cámaras tipo sensores para detección de vehículos. [Online]. Available: https://listindiario.com/la-republica/2020/06/21/622889/intrant-instala-camaras-tipo-sensores-para-deteccion-de-vehiculos. Accessed 13 Oct 2021

  39. Rivera Almodóvar E (2021) Los semáforos inteligentes. [Online]. Available: https://hoy.com.do/los-semaforos-inteligentes/. Accessed 13 Oct 2021

  40. Google Maps (2021) Av. Winston Churchill & Av 27 de Febrero, [Online]. Available: https://www.google.com/maps/place/Av.+Winston+Churchill+%26+Av+27+de+Febrero,+Santo+Domingo,+Dominican+Republic/@18.4624816,-69.9406238,15.96z/data=!4m5!3m4!1s0x8ea5620a17ad443d:0x38608525ec1b70ab!8m2!3d18.4627037!4d-69.9361725. Accessed 13 Oct 2021

    Google Scholar 

  41. Instituto Nacional de Tránsito y Transporte Terrestre (INTRANT) (2017) Tiempo de Espera de los Vehículos en Intersecciones Semaforizadas. Instituto Nacional de Tránsito y Transporte Terrestre (INTRANT), Santo Domingo

    Google Scholar 

  42. Green Signals Consulting Limited. UTC/SCOOT and pedestrian pushbuttons. Green Signals Consulting Limited [Online]. Available: http://www.greensignals.co.uk/news/utcscoot-and-pedestrian-pushbuttons/. Accessed 15 Oct 2021

  43. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: International conference on neural networks, Perth

    Google Scholar 

  44. Vivek S (2018) How to simulate traffic on urban networks using SUMO. [Online]. Available: https://towardsdatascience.com/how-to-simulate-traffic-on-urban-networks-using-sumo-a2ef172e564. Accessed 17 Oct 2021

Download references

Acknowledgements

This work was presented in dissertation form in fulfillment of the requirements for the MSc in Robotics Engineering for the student Eddy Martínez from the Robotics Lab, School of Mathematics, Computer Science and Engineering, Liverpool Hope University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez, E., Buckley, N., Secco, E.L. (2023). A PSO-Optimized Fixed and a PSO-Optimized Neural Network-Adaptive Traffic Signal Controllers for Traffic Improvement in Santo Domingo, Dominican Republic. In: Kumar, S., Hiranwal, S., Purohit, S.D., Prasad, M. (eds) Proceedings of International Conference on Communication and Computational Technologies . Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-3951-8_46

Download citation

Publish with us

Policies and ethics