Skip to main content

The Closed-Form Equations of Motion of a Snake Robot with Coulomb Friction Force

  • Conference paper
  • First Online:
Proceedings of China SAE Congress 2021: Selected Papers

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 818))

  • 866 Accesses

Abstract

A complete formulation of the equations of motion of snake robot locomotion is presented. The equation is in closed-form (i.e., analytic form) which explicitly describes the input-output relationships in terms of independent variables. It includes the dynamics of the unconstrained motion, the constraints, and the Coulomb friction forces induced by the constraints. The salient feature of the equations of motion is that it is only based on the physical variables which configure the motion. No auxiliary variables such as Lagrange multipliers or pseudo-generalized speeds are needed. Therefore, the equations of motion are most suitable for control design and generic dynamic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andruska, A.M., Peterson, K.S.: Control of a snake-like robot in an elastically deformable channel. IEEE/ASME Trans. Mechatron. 13(2), 219–227 (2008)

    Article  Google Scholar 

  2. Chernousko, F.L.: Modelling of snake-like locomotion. Appl. Math. Comput. 164(2), 415–434 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Date, H., Sampei, M., Nakaura, S.: Control of a snake robot in consideration of constraint force (2001)

    Google Scholar 

  4. Gray, J.: The mechanism of locomotion in snakes. J. Exp. Biol. 23(2), 101–120 (1946)

    Article  Google Scholar 

  5. Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford, New York (1993)

    Google Scholar 

  6. Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake robot. IEEE/ASME Trans. Mechatron. 15(1), 9–16 (2010)

    Article  Google Scholar 

  7. Lijeback, P., Pettersen, K.Y., Stavdahl, O., et al.: Snake robot locomotion in environments with obstacles. IEEE/ASME Trans. Mechatron. 17(6), 1158–1169 (2012)

    Article  Google Scholar 

  8. Sato, M., Fukaya, M., Iwasakis, T.: Serpentine locomotion with robotic snakes. IEEE Control Syst. Mag. 22(1), 64–81 (2002)

    Article  Google Scholar 

  9. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge, UK (1996)

    Book  MATH  Google Scholar 

  10. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 462, 2097–2117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jinquan, X., Yutao, D., Ye-hwa, C., et al.: Adaptive robust constrained state control for nonlinear maglev vehicle with guaranteed bounded airgap. IET Control Theory Appl. 12(11), 1573–1583 (2018)

    Article  MathSciNet  Google Scholar 

  12. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA (1989)

    MATH  Google Scholar 

  13. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice. CRC Press, Boca Raton (2004)

    Google Scholar 

  14. Yin, H., Chen, Ye-Hwa., Dejie, Y.: Vehicle motion control under equality and inequality constraints: a diffeomorphism approach. Nonlinear Dyn. 95(1), 175–194 (2018). https://doi.org/10.1007/s11071-018-4558-6

    Article  MATH  Google Scholar 

  15. Yin, H., Chen, Y.H., Huang, J., et al.: Tackling mismatched uncertainty in robust constraint-following control of underactuated systems. Inf. Sci. 520, 337–352 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Udwadia, F.E., Kalaba, R.E., Fan, Y.: Is analytical dynamics a theoretical or an experimental science? Nonlinear Anal. Theory Methods Appl. 63(5), 692–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, H., et al.: Application of the Udwadia–Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83(1–2), 389–400 (2015). https://doi.org/10.1007/s11071-015-2335-3

    Article  MathSciNet  Google Scholar 

  18. Anh, L.X.: Dynamics of Mechanical Systems with Coulomb Friction. Springer-Verlag, Berlin Heidelberg, New York (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Qingmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qingmin, H., Jin, H., Xingyu, L. (2023). The Closed-Form Equations of Motion of a Snake Robot with Coulomb Friction Force. In: Proceedings of China SAE Congress 2021: Selected Papers. Lecture Notes in Electrical Engineering, vol 818. Springer, Singapore. https://doi.org/10.1007/978-981-19-3842-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3842-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3841-2

  • Online ISBN: 978-981-19-3842-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics