Skip to main content

Genomics of Crucifer’s Host-Pathosystem at a Glance

  • Chapter
  • First Online:
Genomics of Crucifer's Host- Pathosystem

Abstract

Crucifer’s crops are very important crop commodity with very significant contribution in the world’s need of human and animals yielding edible and industrial oil along with vegetables and forage crops of economic, trade, and food security. These groups of crops are challenged by numerous pathogens threatening their production at global level. Some of them have been exploited to reveal genomics of host–pathogen interaction to comprehend the molecular mechanisms of infection and pathogenesis for better management of diseases they cause and influence yield and quality losses. The genome of six Brassica crops has been sequenced after the sequencing of Arabidopsis thaliana genome. The genome size of A. thaliana is smallest with 125 Mb and B. napus genome is largest with 925 Mb. To get deeper insight into the molecular and biological functions of host–pathogen interaction, genome of major pathogens of crucifers has been sequenced and analyzed. Among pathogens, P. brassicae genome is compact and smallest with 24.2–25.5 Mb and G. orontii genome causing powdery mildew is largest with 160 Mb in size. The genome analysis of pathogens has facilitated phylogenetic, host specificity, pathogenicity factors/genes, and molecular events during crucifer’s host–pathogen interactions. The perception and understanding of molecular and genetical mechanisms of host–pathogen recognition and events of pathogenesis are regulated by genomics modulation of interacting host and pathogen. Pathogenomics have revealed host specificity, change of host range, and evolution of pathogenic variability. The R genes regulate functions, and molecular mechanisms of host–pathogen interactions. The timing of the induction of genes in R, and S varieties is crucial for mounting effective host defense to the pathogens. Transcriptomic analysis has revealed genes strongly associated with pathogenesis. The genes involved in cell response signaling, cell wall degradation, protein degradation, enzymes production, host transcriptional, and hormonal regulation are differentially expressed. The virulence mechanisms are transition period from biotrophy to necrotrophy to facilitate the acquisition of host nutrients by the pathogen. Differential expression of up and down regulated genes, and functional groups has been identified during host–pathogen interaction. The whole genome analysis of host and pathogen offers potential unbiased insight into the molecular mechanisms of host-pathosystem in crucifers.

For rapid, accuracy, less laborious, and less expensive way of detection and identification of crucifer’s pathogens, pathotypes, and effectors genes, molecular protocols have been used at field, and controlled laboratory conditions. The distinct lineages that had diverged from each other have also been detected. Molecular markers (RAPD, ESTs) have been used for detection and identification of genetical, and pathological variation and clades of pathogens. The molecular approaches have been allowed detection, identification, and quantification of pathogens host cell entry, area covered by pathogens in host tissues, seed, and soil. The RT-PCR protocols have been developed to detect, and discriminate AGs of R. solani from field, soil, and viruses along with their strains from Brassica species. High degree of genetic diversity has been recorded in major pathogens of crucifers in the form of pathotypes/races/strains differing in virulence, and host range on Brassica species and genotypes. The evolution of new virulence’s of pathogens is more common in areas where crops with major gene resistance coupled with genetic uniformity have been sown. The genomes of P. brassicae pathotypes Pb2, Pb5, and Pb8 have been sequenced to gain insight into genome variations and its correlations with host specificity. Phylogenetics of pathotypes has been assessed. The changes in pathotypes structure under field conditions have been analyzed through whole genome DNA similarity sequences. The infection of pathogens in Brassica species activates host metabolism to regulate carbohydrates, respiration, lipid profile, enzymes, toxins, H2O2, OH, phenols, hormones, nucleic acid, proteins, electrolytes, GSL, ROS, and other metabolites which affects crucifer’s physiology, biochemistry, and molecular events leading to pathogenesis. Several genes are differentially expressed during host–pathogen interaction for virulence at different stages of host infection and disease development. The genomics of crucifers host-pathosystem has been studies with simple, reproducible, and standardized methodology to elaborate genome sequencing of host as well as pathogen, events of host and pathogen interaction, signaling pathways, expression of different genes, analysis of transcriptome, biochemical changes, pathogenic variability, molecular markers, transition period from biotrophy to necrotrophy, detection, and identification of pathogens, pathotypes, and genes during the process of infection and pathogenesis of crucifer cops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 95:10306–10311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad B, Ambreen KSH, Khan MS, Haiser A, Khan I (2015) Agrobacterium mediated transformation of Brassica juncea (L) Czern & Coss. with chitinase gene conferring resistance against fungal infections. Pak J Bot 47(1):211–216

    CAS  Google Scholar 

  • Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A (2017) Overexpression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front Plant Sci 8:1693. https://doi.org/10.3389/fpls.2017.01693

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora H, Padmaja KL, Paritosh K, Mukhi N, Tewari A, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2019) BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theor Appl Genet 132:2223–2236. https://doi.org/10.1007/s00122-019-03350-z

    Article  CAS  PubMed  Google Scholar 

  • Bangash SAK, Khan MS, Ambreen KSH, Siddique AN (2013) Genetic transformation of Brassica juncea with an antimicrobial Wasabi defensin gene. Pak J Bot 45(3):993–998

    Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance. Science 265:1856–1860

    Article  CAS  PubMed  Google Scholar 

  • Borhan MH, Holub EB, Kindrachuk C, Omidi M, Bozorgmanesh Frad G, Rimmer SR (2010) WRR4, a broad-spectrum TIR-NBLRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops. Mol Plant Pathol 11:283–291. https://doi.org/10.1111/j.1364-3703.2009.00599.x

    Article  CAS  PubMed  Google Scholar 

  • Bourras S, McNally KE, Ben-David R, Parlange F, Roffler S, Praz CR, Oberhaensli S, Menardo F, Stirnweis D, Frenkel Z, Schaefer LK, Flückiger S, Treier G, Herren G, Korol AB, Wicker T, Keller B (2015) Multiple avirulence loci and allele-specific effector recognition control the pm3 race-specific resistance of wheat to Powdery mildew. Plant Cell 27(10):2991–3012. https://doi.org/10.1105/tpc.15.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourras S, McNally KE, Müller MC, Wicker T, Keller B (2016) Avirulence genes in cereal powdery mildews: the gene-for-gene hypothesis 2.0. Front Plant Sci 7:241. https://doi.org/10.3389/fpls.2016.00241

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhikara S, Chaudhury D, Dhankher OP, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tissue Organ Cult 108:83–89

    Article  CAS  Google Scholar 

  • Crute IR, Beynon J, Dangl J, Holub E, Mauch-Mani B, Slusarenko A, Staskawicz B, Ausubel F (1994) Microbial pathogenesis of Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 705–747

    Google Scholar 

  • Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, Seidl MF, Faino L, Mbengue M, Navaud O, Raffaele S, Hammond-Kosack K, Heard S, Oliver R (2017) The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol 9:593–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan JM, Torrance L (1992) In: Duncan JM, Torrance L (eds) Techniques for the rapid detection of plant pathogens. Blackwell Scientific, Oxford, pp 47–62

    Google Scholar 

  • Faino L, Seidi MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, Thomma BPHJ (2016) Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 26:1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Jiang J, Feindel D, Strelkov SE, Hwang SF (2016) The gene Cr811 is present exclusively in pathotype 5 and new emerged pathotypes of the clubroot pathogen Plasmodiophora brassicae. Eur J Plant Pathol 145:615–620. https://doi.org/10.1007/s10658-016-0903-0

    Article  CAS  Google Scholar 

  • Gibriel HA, Thomma BP, Seidl MF (2016) The age of effectors: genome-based discovery and applications. Phytopathology 106:1206–1212. https://doi.org/10.1094/PHYTO-02-16-0110-FI

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  CAS  PubMed  Google Scholar 

  • Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, Mishra B, Sharma R, Thines M, Hückelhoven R, Doehlemann G (2015) The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol 206:1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Herlihy J, Ludwig NR, van den Ackerveken G, McDowell JM (2019) Oomycetes used in Arabidopsis research. Arabidopsis Book 17:e0188. https://doi.org/10.1199/tab.0188

    Article  PubMed  PubMed Central  Google Scholar 

  • Holub EB (1997) Organization of resistance genes in Arabidopsis. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant-parasite interaction. CAB International, Wallingford, pp 5–26

    Google Scholar 

  • Jouet A, Saunders DGO, McMullan M, Ward B, Furzer O, Jupe F, Cevik V, Hein I, Thilliez GJA, Holub E, van Oosterhout C, Jones JDG (2019) Albugo candida race diversity, ploidy and host-associated microbes revealed using DNA sequence capture on diseased plants in the field. New Phytol 221(3):1529–1543. https://doi.org/10.1111/nph.15417

    Article  CAS  PubMed  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A 93:11746–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Banga SS, Meena PD, Kumar PR (2015) Brassica oilseeds: breeding and management. CABI Publishing, Oxfordshire, p 261

    Book  Google Scholar 

  • Kunkel BN (1996) A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 12:63–69

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144(4):1903–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan HY, Wang CH, Zhang LH, Liu GZ, Wan LL, Chen ZH, Tian YC (2000) Studies on transgenic oilseed rape (Brassica napus) plants transformed with beta-1, 3-glucanase and chitinase genes and its resistance to Sclerotinia sclerotiorum. Chin J Biotechnol 16:142–146

    CAS  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  CAS  PubMed  Google Scholar 

  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545. https://doi.org/10.1146/annurev-arplant-043014-114623

    Article  CAS  PubMed  Google Scholar 

  • Longdou L, Jun GW, Jingxue W, Hongying D, Ruili L (2005) Expression of chitinase gene in transgenic rape plants. Genet Si Biol Molecul Tom 6(1):167–170

    Google Scholar 

  • Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL (2020) Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 11:14. https://doi.org/10.1186/s43008-020-00033-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2016) A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathog 12:e1005435

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin RR, James D, Levesque CA (2000) Impacts of molecular diagnostic technologies on plant disease management. Annu Rev Phytopathol 38:207–239

    Article  CAS  PubMed  Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59(2):129–142. https://doi.org/10.1002/ps.575

    Article  CAS  PubMed  Google Scholar 

  • Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099

    Article  CAS  PubMed  Google Scholar 

  • Mondal KK, Chatterjee SC, Viswakarma N, Bhattacharya RC, Grover A (2003) Chitinase mediated inhibitory activity of Brassicas transgenic on growth of Alternaria brassicae. Curr Microbiol 47:171–173. https://doi.org/10.1007/s00284-002-3980-6

    Article  CAS  PubMed  Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2006) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    Article  PubMed  Google Scholar 

  • Näpflin K, O’Connor EA, Becks L, Bensch S, Ellis VA, Hafer-Hahmann N, Harding KC, Lindén SK, Olsen MT, Roved J, Sackton TB, Shultz AJ, Venkatakrishnan V, Videvall E, Westerdahl H, Winternitz JC, Edwards SV (2019) Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. Peer J 7:e8013. https://doi.org/10.7717/peerj.8013

    Article  PubMed  PubMed Central  Google Scholar 

  • Neik TX, Barbetti MJ, Batley J (2017) Current status and challenges in identifying disease resistance genes in Brassica napus. Front Plant Sci 8:1788. https://doi.org/10.3389/fpls.2017.01788

    Article  PubMed  PubMed Central  Google Scholar 

  • Nirupa N, Prasad MNV, Jami SK, Kirti PB (2007) Optimization of Agrobacterium-mediated overexpression of osmotin-ferritin genes in Brassica juncea. Transgenic Plant J 1(2):384–392

    Google Scholar 

  • Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen E, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene Rpp5 shares similarity to the Toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Lan T, Amasino R, Osborn TC, Quiros C (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol 2(3):1011.1–1011.4

    Article  Google Scholar 

  • Redkar A, Bonequi MV, Doehlemann G (2015) Conservation of the Ustilago maydis effector See1 in related smuts. Plant Signal Behav 10:e1086855

    Article  PubMed  PubMed Central  Google Scholar 

  • Rommens CMT, Salmeron JM, Oldroyd GED, Staskawicz BJ (1995) Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7:1537–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GH, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent MH, Howlett BJ (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2:202. https://doi.org/10.1038/ncomms1189

    Article  CAS  PubMed  Google Scholar 

  • Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M (2015) Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol 167(3):1158–1185. https://doi.org/10.1104/pp.114.255927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB (2014) Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Mol Biotechnol 56:535–545. https://doi.org/10.1007/s12033-013-9727-8

    Article  CAS  PubMed  Google Scholar 

  • Saharan GS, Mehta NK (2008) Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer, Delft, p 486

    Book  Google Scholar 

  • Saharan GS, Mehta NK, Sangwan MS (2005) Development of disease resistance in rapeseed-mustard. In: Saharan GS, Mehta NK, Sangwan MS (eds) Diseases of oilseed crops. Indus Pub Co., New Delhi, pp 561–617

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and disease management. Springer, New Delhi, p 244. https://doi.org/10.1007/978-81-322-1792-3

    Book  Google Scholar 

  • Saharan GS, Naresh NK, Meena PD (2016) Alternaria blight of crucifers: biology, ecology and disease management. Springer, Singapore, p 326. https://doi.org/10.1007/978-981-10-0021-8

    Book  Google Scholar 

  • Saharan GS, Mehta NK, Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore, p 357. https://doi.org/10.1007/978-981-10-7500-1

    Book  Google Scholar 

  • Saharan GS, Mehta NK, Meena PD (2019) Powdery mildew disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore, p 362. https://doi.org/10.1007/978-981-13-9853-7

    Book  Google Scholar 

  • Saharan GS, Mehta NK, Meena PD (2021a) Clubroot disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore, p 757. https://doi.org/10.1007/978-981-16-2133-8

    Book  Google Scholar 

  • Saharan GS, Mehta NK, Meena PD (2021b) Molecular mechanism of crucifer’s host-resistance. Springer Nature, Singapore, p 835. https://doi.org/10.1007/978-981-16-1974-8

    Book  Google Scholar 

  • Saharan GS, Mehta NK, Meena PD (2021c) Genomics of crucifer’s host-resistance. Springer Nature, Singapore, p 784. https://doi.org/10.1007/978-981-16-0862-9

    Book  Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Martín JM, Pacheco-Arjona JR, Bello-Rico V, Vargas WA, Monod M, Díaz-Mínguez JM, Thon MR, Sukno SA (2016) A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Mol Plant Pathol 17(7):1048–1062. https://doi.org/10.1111/mpp.12347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schots A, Dewey FM, Oliver R (1994) Modern assays for plant pathogenic fungi: identification, detection and quantification. CAB International, Wallingford

    Google Scholar 

  • Shigenaga AM, Argueso CT (2016) No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189. https://doi.org/10.1016/j.semcdb.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M (2012) Centromeres of filamentous fungi. Chromosom Res 20:635–656

    Article  CAS  Google Scholar 

  • Song K, Slocum MK, Osborn TC (1995) Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet 90:1–10

    Article  CAS  PubMed  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  PubMed  Google Scholar 

  • Taj G, Kumar A, Bansal KC, Garg GK (2004) Introgression of osmotin gene for creation of resistance against Alternaria blight by perturbation of cell cycle machinery. Indian J Biotechol 3:291–298

    CAS  Google Scholar 

  • Tasleem M, Baunthiyal M, Kumar A, Taj G (2017) Determination of antioxidant activity in overexpressed MPK3 transgenic Brassica juncea for induction of defense against Alternaria blight disease. J Pharma Phytochem 6(6):2579–2582

    CAS  Google Scholar 

  • Thakur AK, Parmar N, Singh KH, Nanjundan J (2020) Current achievements and future prospects of genetic engineering in Indian mustard [Brassica juncea (L) Czern & Coss.]. Planta 252(4):56. https://doi.org/10.1007/s00425-020-03461-8

    Article  CAS  PubMed  Google Scholar 

  • Thilmony RL, Chen Z, Bressan RA, Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avrPto. Plant Cell 7:1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UN (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Ward E (1994) Use of the polymerase chain reaction for identifying plant pathogens. In: Blackman JP, Williamson B (eds) Ecology of plant pathogens. CAB International, Wallingford, pp 143–160

    Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Williams PH, Hill CB (1986) Rapid cycling populations of Brassica. Science 232:1385–1389

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Coulibaly S, Sadowski J, Quiros CF (2000) Variation and phylogenetic utility of the Arabidopsis thaliana Rps2 homolog in various species of the tribe Brassiceae. Mol Phylogenet Evol 16:440–448

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L (2018) Colletotrichum higginsianum as a model for understanding host–pathogen interactions: a review. Int J Mol Sci 19(7):2142. https://doi.org/10.3390/ijms19072142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YG, Buss GR, Maroof MAS (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci U S A 93:11751–11756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh Saharan, G., Mehta, N.K., Meena, P.D. (2023). Genomics of Crucifer’s Host-Pathosystem at a Glance. In: Genomics of Crucifer's Host- Pathosystem . Springer, Singapore. https://doi.org/10.1007/978-981-19-3812-2_7

Download citation

Publish with us

Policies and ethics