Skip to main content

Capturing and Transforming Planning Processes for Smart Contracts

  • Chapter
  • First Online:
Blockchain for Construction

Part of the book series: Blockchain Technologies ((BT))

Abstract

This chapter presents a conceptual framework for the application of blockchain technology with Building Information Modeling (BIM) in the design phase, with a further use case exploration of Smart Contracts implementation. One of the main challenges in BIM workflows is the traceability of changes within a BIM model and closely coupled with it, the accountability for clearances and the sharing of model information. We argue that the different value chain activities, actors, and digital assets in the design phase could be linked on the basis of Blockchain (BC) and Smart Contracts (SC). Our BIMd.sign framework shows mainly three factors why BC and SC can be considered to deliver benefits to a BIM-based process if implemented: documentation, traceability, and transparency. We argue that the gained information from this analysis will give enough insight to evaluate the needed “level of detail” of repeating acts or sequences, in which traceability through SC can deliver a sufficient supplement respectively optimization for planning processes in the design phase. Furthermore, based on our research, we suggest that possible applications of SC in the design phase require a transformation of existing workflows for the implementation of digital technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrishami S, Elghaish F (2019) Revolutionising AEC financial system within project delivery stages: a permissioned blockchain digitalised framework. 36th CIB W 78:2019

    Google Scholar 

  2. Aguilar-Savén RS (2004) Business process modelling: review and framework. Int J Prod Econ 90(2):129–149. https://doi.org/10.1016/S0925-5273(03)00102-6

    Article  Google Scholar 

  3. Altay H, Motawa I (2020) An investigation on the applicability of smart contracts in the construction industry. Paper presented at the workshop proceedings

    Google Scholar 

  4. Bore N, Kinai A, Mutahi J, Kaguma D, Otieno F, Remy SL, Weldemariam K (2019) On using blockchain based workflows. In: 2019 IEEE international conference on blockchain and cryptocurrency (ICBC). IEEE, pp 112–116

    Google Scholar 

  5. Breitfuß D, Šibenik G, Srećković M (2021) Digital traceability for planning processes. In: ECPPM 2021—eWork and eBusiness in architecture, engineering and construction. In: Proceedings of the 13th European conference on product & process modelling (ECPPM 2021), 15–17 Sept 2021, Moscow, Russia

    Google Scholar 

  6. buildingSmart (2021) viewed 14 April 2021. https://technical.buildingsmart.org/standards/information-delivery-manual/

  7. Cavka HB, Staub-French S, Poirier EA (2017) Developing owner information requirements for BIM-enabled project delivery and asset management. Autom Constr 83:169–183. https://doi.org/10.1016/j.autcon.2017.08.006

  8. Cecconi FR, Dejaco MC, Moretti N, Mannino A, Cadena JDB (2020) Digital asset management. In: Digital transformation of the design, construction and management processes of the built environment. Springer, Cham, pp 243–253

    Google Scholar 

  9. Chassiakos A, Sakellaropoulos S (2008) A web-based system for managing construction information. Adv Eng Softw 39(11):865–876

    Article  Google Scholar 

  10. Coyne R, Onabolu T (2018) Blockchain for architects. Arch Res Q 21(4):369–374. https://doi.org/10.1017/S1359135518000167

    Article  Google Scholar 

  11. DIN EN ISO 21597-1:2021-07-00, Informationscontainer zur Datenübergabe—Austausch-Spezifikationen—Teil 1: Container (ISO 21597-12020); Deutsche Fassung EN ISO 21597-1:2020

    Google Scholar 

  12. DIN SPEC 91391-1:2019-04 Gemeinsame Datenumgebungen (CDE) für BIM Projekte—Funktionen und offener Datenaustausch zwischen Plattformen unterschiedlicher Hersteller—Teil 1: Module und Funktionen einer Gemeinsamen Datenumgebung, mit digitalem Anhang, Deutsches Institut für Normung e.V.

    Google Scholar 

  13. Dounas T, Lombardi D, Jabi W (2021) Framework for decentralised architectural design BIM and Blockchain integration. Int J Archit Comput 19(2):157–173. https://doi.org/10.1177/1478077120963376

    Article  Google Scholar 

  14. Erri Pradeep AS, Yiu TW, Amor R (2019) Leveraging blockchain technology in a BIM workflow: a literature review. In: International conference on smart infrastructure and construction 2019 (ICSIC), pp 371–380. https://doi.org/10.1680/icsic.64669.371

  15. Goodhue DL, Thompson RL (1995) Task-technology fit and individual performance. MIS quarterly:213–236

    Google Scholar 

  16. Hattab MA, Hamzeh F (2016) Analyzing design workflow: an agent-based modeling approach. Procedia Eng 164:510–517. https://doi.org/10.1016/j.proeng.2016.11.652

    Article  Google Scholar 

  17. HOAI—Honorarordnung für Architekten und Ingenieure (2013) HOAI 2013 Volltext,, viewed 16 December 2020. https://www.hoai.de/online/HOAI_2013/HOAI_2013.php

  18. Hunhevicz JJ, Hall DM (2020) Do you need a blockchain in construction? Use case categories and decision framework for DLT design options. Adv Eng Inform 45:101094. https://doi.org/10.1016/j.aei.2020.101094

    Article  Google Scholar 

  19. ISO (International Organization for Standardization) (2016) ISO 29481-1:2016: building information models—information delivery manual—part 1: methodology and format. ISO, Geneva, Switzerland

    Google Scholar 

  20. ISO (International Organization for Standardization) (2012) ISO 29481-2:2012: Building information models—information delivery manual—part 2: interaction framework. ISO, Geneva, Switzerland

    Google Scholar 

  21. ISO (International Organization for Standardization) (2018) ISO 19650-2:2018 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM)—information management using building information modelling—part 2: delivery phase of the assets. Geneva, Switzerland

    Google Scholar 

  22. Kalsaas BT, Sacks R (2011) Conceptualization of interdependency and coordination between construction tasks. Proceedings of the IGLC-19 Lima, Peru

    Google Scholar 

  23. Karim J, Somers T, Bhattacherjee A (2007) The impact of ERP implementation on business process outcomes: a factor-based study. J Manage Inf Syst 24(1):101–134. https://doi.org/10.2753/mis0742-1222240103

    Article  Google Scholar 

  24. Knotten V, Svalestuen F, Hansen GK, Lædre O (2015) Design management in the building process-a review of current literature. Procedia Econ Finance 21:120–127

    Article  Google Scholar 

  25. Li J, Greenwood D, Kassem M (2019) Blockchain in the built environment and construction industry: a systematic review, conceptual models and practical use cases. Autom Constr 102:288–307. https://doi.org/10.1016/j.autcon.2019.02.005

    Article  Google Scholar 

  26. LM.VM (2014) In: Lechner H, Heck D (eds) Leistungsmodelle + Vergütungsmodelle. Verlag der Technischen Universität Graz, Graz, Austria

    Google Scholar 

  27. Love PED, Matthews J, Lockley S (2015) BIM for built asset management. Built Environ Project Asset Manag 5(3). https://doi.org/10.1108/BEPAM-12-2014-0062

  28. Mason J (2017) Intelligent contracts and the construction industry. J Leg Aff Disput Resolut Eng Constr 9(3):04517012

    Article  Google Scholar 

  29. Mason J, Escott H (2018) Smart contracts in construction: views and perceptions of stakeholders. In: Proceedings of FIG conference, Istanbul May 2018

    Google Scholar 

  30. Nawari NO, Ravindran S (2019) Blockchain technology and BIM process: review and potential applications. J Inform Technol Constr 24(12):209–238

    Google Scholar 

  31. Oraee M, Hosseini MR, Edwards D, Papadonikolaki E (2021) Collaboration in BIM-based construction networks: a qualitative model of influential factors. Eng Constr Archit Manag, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ECAM-10-2020-0865

  32. Perera S, Nanayakkara S, Rodrigo MNN, Senaratne S, Weinand R (2020) Blockchain technology: Is it hype or real in the construction industry? J Ind Inf Integr 17:100125. https://doi.org/10.1016/j.jii.2020.100125

    Article  Google Scholar 

  33. PMI—Project Management Institute (2017) A guide to the project management body of knowledge (PMBOK guide), 6th edn. Project Management Institute, Pennsylvania, USA

    Google Scholar 

  34. Preidel C, Borrmann A, Mattern H, König M, Schapke S-E (2018) Common data environment. In: Borrmann A, König M, Koch C, Beetz J (eds) Building information modeling: technology foundations and industry practice. Springer International Publishing, Cham, pp 279–291

    Chapter  Google Scholar 

  35. RIBA Plan of Work (2020) Viewed 16 December 2020, https://www.architecture.com/-/media/GatherContent/Test-resources-page/Additional-Documents/Printfriendly2020RIBAPlanofWorkoverviewpdf.pdf

  36. Sibenik G, Kovacic I (2020) Assessment of model-based data exchange between architectural design and structural analysis. J Build Eng 32:101589

    Article  Google Scholar 

  37. Sibenik G, Petrinas V (2020) IFCtoJSON [Software]. https://zenodo.org/badge/latestdoi/246248514 (accessed 31.7.2020)

  38. Sibenik G, Sreckovic M, Radu A (2021) Modular process patterns in the design phase. In: 2021 European conference on computing in construction (EC3). Proceedings of the European conference on computing in construction. Rhodes, Greece, pp 1–9; 26.07.2021–28.07.2021. ISBN 978-3-907234-54-9

    Google Scholar 

  39. Singh S, Ashuri B (2019) Leveraging blockchain technology in AEC industry during design development phase. Computing in civil engineering 2019: visualization, information modeling, and simulation. American Society of Civil Engineers Reston, VA, pp 393–401

    Chapter  Google Scholar 

  40. Srećković M, Šibenik G, Breitfuß D, Preindl T, Kastner W (2021) Analysis of design phase processes with BIM for blockchain implementation. In: Semenov V, Scherer RJ (eds) ECPPM 2021—eWork and eBusiness in Architecture, Engineering and Construction: Proceedings of the 13th European Conference on Product & Process Modelling (1st edn). CRC Press, London, UK, 2021. https://doi.org/10.1201/9781003191476

  41. Srećković M, Šibenik G, Sigalow K, Ye X, König M, Reitmayer K (2021) Upkeeping digital assets during construction using blockchain technology, paper for the 38th CIB W78 conference on information and communication echnologies for AECO, Luxembourg, 11–15 Oct 2021

    Google Scholar 

  42. Strnadl CF (2006) Aligning business and IT: the process-driven architecture model. Inf Syst Manag 23(4):67–77

    Article  Google Scholar 

  43. Succar B, Poirier E (2020) Lifecycle information transformation and exchange for delivering and managing digital and physical assets. Autom Constr 112:103090. https://doi.org/10.1016/j.autcon.2020.103090

    Article  Google Scholar 

  44. Turk Ž, Klinc R (2017) Potentials of blockchain technology for construction management. Procedia Eng 196:638–645. https://doi.org/10.1016/j.proeng.2017.08.052

    Article  Google Scholar 

  45. van Nederveen GA, Tolman FP (1992) Modelling multiple views on buildings. Autom Constr 1(3):215–224

    Article  Google Scholar 

Download references

Acknowledgements

The research project BIMd.sign—BIM digitally signed with Blockchain in the design phase (Grant No. 873842), is funded by the Austrian Research Promotion Agency (FFG), Program ICT of the Future, and the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT). The authors are grateful for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Srećković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srećković, M., Šibenik, G., Breitfuß, D. (2022). Capturing and Transforming Planning Processes for Smart Contracts. In: Dounas, T., Lombardi, D. (eds) Blockchain for Construction. Blockchain Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-3759-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3759-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3758-3

  • Online ISBN: 978-981-19-3759-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics