Skip to main content

Biofuel Generation Process

  • Chapter
  • First Online:
Biofuel Production Using Anaerobic Digestion

Part of the book series: Green Energy and Technology ((GREEN))

  • 254 Accesses

Abstract

Increasing global population indirectly increases the world energy demand and way to economic crisis. The continuous burning of petroleum fuel leads to lack of fuel supply and causes several adverse effects on the environment. It is very difficult to balance the increasing global population and their energy demand. Generating bioenergy from renewable feedstock will be the best way to balance the current world energy demand and strengthen the global economic crisis. Biofuels have emerged as a viable source of long-term energy resources and have been classified under renewable energy resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ge H, Jensen PD, Batstone DJ (2011) Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. J Hazard Mater 187:355–361

    Article  Google Scholar 

  2. Feng L, Yan Y, Chen Y (2009) Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10. J Environ Sci (China) 21:589–594

    Article  Google Scholar 

  3. Veeken A, Hamelers B (1999) Effect of temperature on hydrolysis rates of selected biowaste components. Bioresour Technol 69:249–254

    Article  Google Scholar 

  4. Bolzonella D, Fatone F, Pavan P, Cecchi F (2005) Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind Eng Chem Res 44:3412–3418

    Article  Google Scholar 

  5. Cirne DG, Agbor VB, Björnsson L (2008) Enhanced solubilisation of the residual fraction of municipal solid waste. Water Sci Technol 57:995–1000

    Article  Google Scholar 

  6. Sesay ML, Ozcengiz G, Dilek Sanin F (2006) Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation. Water Res 40:1359–1366

    Article  Google Scholar 

  7. Song Y-C, Kim M, Shon H, Jegatheesan V, Kim S (2018) Modeling methane production in anaerobic forward osmosis bioreactor using a modified anaerobic digestion model No. 1. Bioresour Technol 264:211–218

    Article  Google Scholar 

  8. Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629

    Article  Google Scholar 

  9. Vea EB, Romeo D, Thomsen M (2018) Biowaste valorisation in a future circular bioeconomy. Procedia CIRP 69:591–596

    Article  Google Scholar 

  10. Wang L, Agyemang SA, Amini H, Shahbazi A (2015) Mathematical modeling of production and biorefinery of energy crops. Renew Sustain Energy Rev 43:530–554

    Article  Google Scholar 

  11. Zhao X, Li L, Wu D, Xiao T, Ma Y, Peng X (2019) Modified Anaerobic Digestion Model No. 1 for modeling methane production from food waste in batch and semi-continuous anaerobic digestions. Bioresour Technol 271:109–117

    Article  Google Scholar 

  12. Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook, 2nd edn. Stockton Press, New York, NY

    Google Scholar 

  13. Singh S, Chakravarty I, Pandey KD, Kundu S (2018) Development of a process model for simultaneous saccharification and fermentation (SSF) of algal starch to third-generation bioethanol. Biofuels 1–9

    Google Scholar 

  14. Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383

    Article  Google Scholar 

  15. Gusakov AV, Sinitsyn AP (1992) A theoretical analysis of cellulase product inhibition effect of cellulase binding constant, enzyme substrate ratio, and beta-glucosidase activity on the inhibition pattern. Biotechnol Bioeng 40:663–671

    Article  Google Scholar 

  16. Kadam KL, Rydholm EC, Mcmillan JD (2004) Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol Prog 20:698–705

    Article  Google Scholar 

  17. Ahlert S, Zimmermann R, Ebling J, König H (2016) Analysis of propionate-degrading consortia from agricultural biogas plants. Microbiologyopen 5:1027–1037

    Article  Google Scholar 

  18. Wu H, Fu Y, Guo C, Li Y, Jiang N, Yin C (2018) Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater. Bioresour Technol 260:130–134

    Article  Google Scholar 

  19. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202

    Article  Google Scholar 

  20. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  Google Scholar 

  21. Tsui T-H, Chen L, Hao T, Chen G-H (2016) A super high-rate sulfidogenic system for saline sewage treatment. Water Res 104:147–155

    Article  Google Scholar 

  22. Shuai L, Luterbacher J (2016) Organic solvent effects in biomass conversion reactions. Chemsuschem 9:133–155

    Article  Google Scholar 

  23. Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. Chemsuschem 6:110–122

    Article  Google Scholar 

  24. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493

    Article  Google Scholar 

  25. Li R, Xie Y, Yang T, Li B, Wang W, Kai X (2015) Effects of chemical-biological pretreatment of corn stalks on the bio-oils produced by hydrothermal liquefaction. Energy Convers Manag 93:23–30

    Article  Google Scholar 

  26. Holzhäuser FJ, Creusen G, Moos G, Dahmen M, König A, Artz J, Palkovits S, Palkovits R (2019) Electrochemical cross-coupling of biogenic di-acids for sustainable fuel production. Green Chem 21:2334–2344

    Article  Google Scholar 

  27. Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414

    Article  Google Scholar 

  28. Bedoić R, Čuček L, Ćosić B, Krajnc D, Smoljanić G, Kravanja Z, Ljubas D, Pukšec T, Duić N (2019) Green biomass to biogas—a study on anaerobic digestion of residue grass. J Clean Prod 213:700–709

    Article  Google Scholar 

  29. Biernacki P, Steinigeweg S, Borchert A, Uhlenhut F (2013) Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine. Bioresour Technol 127:188–194

    Article  Google Scholar 

  30. García-Diéguez C, Bernard O, Roca E (2013) Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater. Bioresour Technol 132:244–253

    Article  Google Scholar 

  31. Ntaikou I, Gavala HN, Lyberatos G (2010) Application of a modified Anaerobic Digestion Model 1 version for fermentative hydrogen production from sweet sorghum extract by Ruminococcus albus. Int J Hydrogen Energy 35:3423–3432

    Article  Google Scholar 

  32. Pastor-Poquet V, Papirio S, Steyer J-P, Trably E, Escudié R, Esposito G (2018) High-solids anaerobic digestion model for homogenized reactors. Water Res 142:501–511

    Article  Google Scholar 

  33. SriBala G, Carstensen H-H, Van Geem KM, Marin GB (2019) Measuring biomass fast pyrolysis kinetics: state of the art. Wiley Interdiscip Rev Energy Environ 8:e326

    Google Scholar 

  34. Gama FM, Teixeira JA, Mota M (1994) Cellulose morphology and enzymatic reactivity: a modified solute exclusion technique. Biotechnol Bioeng 43:381–387

    Article  Google Scholar 

  35. Klyosov AA (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29:10577–10585

    Article  Google Scholar 

  36. Kristensen JB, Borjesson J, Bruun M, Tjerneld F, Jorgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol 40:888–895

    Article  Google Scholar 

  37. Lenz J, Esterbauer H, Sattler W, Schurz J, Wrentschur E (1990) Changes of structure and morphology of regenerated cellulose caused by acid and enzymatic hydrolysis. J Appl Polym Sci 41:1315–1326

    Article  Google Scholar 

  38. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  Google Scholar 

  39. Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672

    Article  Google Scholar 

  40. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550

    Article  Google Scholar 

  41. Wahlström RM, Suurnäkki A (2015) Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem 17:694–714

    Article  Google Scholar 

  42. Chen Q, Liu D, Wu C, Xu A, Xia W, Wang Z, Wen F, Yu D (2017) Influence of a facile pretreatment process on lipid extraction from Nannochloropsis sp. through an enzymatic hydrolysis reaction. RSC Adv 7(84):53270–53277

    Article  Google Scholar 

  43. Hernández D, Solana M, Riaño B, García-González MC, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Biores Technol 170:370–378

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaliappan Sudalyandi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudalyandi, K., Jeyakumar, R. (2022). Biofuel Generation Process. In: Biofuel Production Using Anaerobic Digestion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3743-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3743-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3742-2

  • Online ISBN: 978-981-19-3743-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics