Skip to main content

Biomass for Biofuel Generation

  • Chapter
  • First Online:
Biofuel Production Using Anaerobic Digestion

Part of the book series: Green Energy and Technology ((GREEN))

  • 267 Accesses

Abstract

Biomass originates from organic material and can be used to generate energy. It is considered to be a renewable and sustainable source of energy because of the availability of biomass residue throughout the year, such as scrap wood, waste activated sludge and municipal solid waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronak agrotek (2015) Calorific value chart. Class 7 under no 16423425

    Google Scholar 

  2. Echiegu EA, Nwoke OA, Ugwuishiwu BO, Opara IN (2013) Calorific value of manure from some nigerian livestock and poultry as affected by age. Int J Sci Eng Res 4:999–1004

    Google Scholar 

  3. Su P, Brookes PC, He Y, Wu J, Xu J (2016) An evaluation of a microbial inoculum in promoting organic C decomposition in a paddy soil following straw incorporation. J Soil Sediment 16(6):1776–1786

    Article  Google Scholar 

  4. Hiloidhari M, Baruah DC (2011) Rice straw residue biomass potential for decentralized electricity generation: a GIS based study in Lakhimpur district of Assam, India. Energy Sust Develop 15:214–222

    Article  Google Scholar 

  5. Madhuri N, Velmurugan B, Anil K, Bhim SP, Murari S (2016) Enhanced biogas production from rice straw by selective micronutrients under solid state anaerobic digestion. Bioresour Technol 220:666–671

    Article  Google Scholar 

  6. Balachandra P (2011) Modern energy access to all in rural India: An integrated implementation strategy. Energy Policy 39:7803–7814

    Article  Google Scholar 

  7. Arry YN, Yuda CH, Hasanah W (2016) Endeavoring to food sustainability by promoting corn cob and rice husk briquetting to fuel energy for small scale industries and household communities. Agric Agric Sci Procedia 9:386–395

    Google Scholar 

  8. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52(2):858–875

    Article  Google Scholar 

  9. Omidvar M, Karimi K, Mohammadi M (2016) Enhanced ethanol and glucosamine production from rice husk by NAOH pretreatment and fermentation by fungus Mucorhiemalis. Biofuel Res J 3(3):475–481

    Article  Google Scholar 

  10. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28:237–259

    Article  Google Scholar 

  11. Jelle W, Arjan TS, Johannes HR, Wouter JJH (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66

    Article  Google Scholar 

  12. Mandar PB, Parag RG, Aniruddha BP, Levente C (2014) Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing. Ultrason Sonochem 21(1):162–168

    Article  Google Scholar 

  13. Meena K, Virendra KV, Ram C (2016) Performance evaluation of various bioreactors for methane fermentation of pretreated wheat straw with cattle. Green Proc Synthesis 5(2):113–121. https://doi.org/10.1515/gps-2015-0067

    Article  Google Scholar 

  14. Arora D, Sharma V, Garg U, Kumar (2016) Decolourizing of distillery spent wash using indigenously prepared cation exchanger from the agricultural waste (Wheat Straw). Int J Emerg Techno. 7.1:11–17

    Google Scholar 

  15. Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF (2001) Utilization of agricultural waste corn cob for the preparation of carbon adsorbent. J Environ Sci Health B 36(5):677–686. https://doi.org/10.1081/PFC-100106194

    Article  Google Scholar 

  16. Lin L, van der Ester V, Gjalt H (2009) An energy analysis of ethanol from cellulosic feedstock Corn stover. Renew Sust Energy Rev 13:2003–2011

    Article  Google Scholar 

  17. Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Bruce EL (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43(15):6088–6093

    Article  Google Scholar 

  18. Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Manju L (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Organ Waste Agric 5(3):185–194

    Article  Google Scholar 

  19. Agrawal KM, Barve BR, Khan SS (2013) Biogas from press mud. IOSR J Mech Civil Eng 37–41

    Google Scholar 

  20. Bahurudeen A, Marckson AV, Kishore A, Santhanam M (2014) Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with super plasticizers. Constr Build Mater 68:465–475

    Article  Google Scholar 

  21. Sessa TDC, Silvoso MM, Vazquez EG, Qualharini EL, Haddad AN, AmaralAlves L (2016) Study of the technical capability of sugarcane bagasse ash in concreteproduction. Mater Sci Forum 866:53–57

    Article  Google Scholar 

  22. Azma P, Yasseer A, Hady E, Wan MF, MdRazali A, Muhammad SP (2013) Utilizing sugarcane wasted fibers as a sustainable acoustic absorber. Procedia Eng 53:632–638

    Article  Google Scholar 

  23. Manoj T, Sahub JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481

    Article  Google Scholar 

  24. De Vrieze J, Raport L, Roume H, Vilchez-Vargas R, Jáuregui R, Pieper DH, Boon N (2016) The full-scale anaerobic digestion microbiome is represented by specific marker populations. Water Res 104:101–110

    Article  Google Scholar 

  25. Wang P, Yu Z, Zhao J, Zhang H (2018) Do microbial communities in an anaerobic bioreactor change with continuous feeding sludge into a full-scale anaerobic digestion system? Bioresour Technol 249:89–98

    Article  Google Scholar 

  26. Lee J, Shin SG, Han G, Koo T, Hwang S (2017) Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability. Bioresour Technol 245:689–697

    Article  Google Scholar 

  27. Lin L, Yu Z, Li Y (2017) Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum—Part II: Microbial diversity and succession. Bioresour Technol 241:1027–1035

    Article  Google Scholar 

  28. Ge X, Xu F, Li Y (2016) Solid-state anaerobic digestion of lignocellulosic biomass: recent progress and perspectives. Bioresour Technol 205:239–249

    Article  Google Scholar 

  29. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:1–31

    Article  Google Scholar 

  30. Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sustain Energy Rev 16:861–877

    Article  Google Scholar 

  31. Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280

    Article  Google Scholar 

  32. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3:117–129

    Article  Google Scholar 

  33. Xu F, Li Y, Ge X, Yang L, Li Y (2018) Anaerobic digestion of food waste—challenges and opportunities. Bioresour Technol 247:1047–1058

    Article  Google Scholar 

  34. Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A (2018) Composting of food wastes: status and challenges. Bioresour Technol 248:57–67

    Article  Google Scholar 

  35. Wang X, Selvam A, Lau SSS, Wong JWC (2018) Influence of lime and struvite on microbial community succession and odour emission during food waste composting. Bioresour Technol 247:652–659

    Article  Google Scholar 

  36. Zhang H, Schroder J (2014) Animal manure production and utilization in the US. Appl Manure Nutr Chem Sustain Agric Environ 1–21

    Google Scholar 

  37. Kumar S (2010) Composting of municipal solid waste. Crit Rev Biotechnol 31:112–136

    Article  Google Scholar 

  38. Li YF, Nelson MC, Chen PH, Graf J, Li Y, Yu Z (2014) Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Appl Microbiol Biotechnol 99:969–980

    Article  Google Scholar 

  39. De Baere L, Mattheeuws B (2012) Anaerobic digestion of the organic fraction of municipal solid waste in Europe. Waste Manag 3:517–526

    Google Scholar 

  40. Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34:607–622

    Article  Google Scholar 

  41. Jurado M, López MJ, Suárez-Estrella F, Vargas-García MC, López-González JA, Moreno J (2014) Exploiting composting biodiversity: Study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. Bioresour Technol 162:283–293

    Article  Google Scholar 

  42. Liang Y, Lu Y, Li Q (2016) Comparative study on the performances and bacterial diversity from anaerobic digestion and aerobic composting in treating solid organic wastes. Waste Biomass Valor 8:425–432

    Article  Google Scholar 

  43. Sharmila VG, Angappane S, Gunasekaran M, Kumar G, Banu JR (2020) Immobilized ZnO nano film impelled bacterial disintegration of dairy sludge to enrich anaerobic digestion for profitable bioenergy production: Energetic and economic analysis. Bioresour Technol 308:123276

    Article  Google Scholar 

  44. Aboudi K, Álvarez-Gallego CJ, Romero-García LI (2015) Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: effect of the organic loading rate (OLR) on process performance. Bioresour Technol 194:283–290

    Article  Google Scholar 

  45. Sharmila VG, Banu JR, Kim S-H, Kumar G (2020) A review on evaluation of applied pretreatment methods of wastewater towards sustainable H2 generation: energy efficiency analysis. Int J Hydrogen Energy 45:8329–8345

    Article  Google Scholar 

  46. Uthirakrishnan U, Sharmila VG, Merrylin J, Kumar SA, Dharmadhas JS, Varjani S, Banu JR (2022) Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: a critical review. Chemosphere 288:132553

    Article  Google Scholar 

  47. El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101:4021–4028

    Article  Google Scholar 

  48. Banu JR, Sharmila VG, Kannah RY, Kanimozhi R, Elfasakhany A, Gunasekaran M, Kumar SA, Kumar G (2022) Impact of novel deflocculant ZnO/Chitosan nanocomposite film in disperser pretreatment enhancing energy efficient anaerobic digestion: parameter assessment and cost exploration. Chemosphere 286:131835

    Article  Google Scholar 

  49. Chen H, Yan S-H, Ye Z-L, Meng H-J, Zhu Y-G (2012) Utilization of urban sewage sludge: chinese perspectives. Environ Sci Pollut Res 19:1454–1463

    Article  Google Scholar 

  50. Zhang J, Lü F, Shao L, He P (2014) The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresour Technol 168:252–258

    Article  Google Scholar 

  51. Sokkanathan G, Sharmila VG, Kaliappan S, Banu JR, Yeom IT, Rani RU (2018) Combinative treatment of phenol-rich retting-pond wastewater by a hybrid upflow anaerobic sludge blanket reactor and solar photofenton process. J Environ Manage 206:999–1006

    Article  Google Scholar 

  52. Chang H-D, Chen C-Y (2014) Composting of biosolids enhanced by a combined pretreatment with hydrogen peroxide and triton X-100. Waste Biomass Valor 6:45–51

    Article  Google Scholar 

  53. Fu B, Jiang Q, Liu H-B, Liu H (2015) Quantification of viable but nonculturable Salmonella spp. and Shigella spp. during sludge anaerobic digestion and their reactivation during cake storage. J Appl Microbiol 119:1138–1147

    Article  Google Scholar 

  54. Fu B, Jiang Q, Liu H, Liu H (2013) Occurrence and reactivation of viable but non-culturable E. coli in sewage sludge after mesophilic and thermophilic anaerobic digestion. Biotechnol Lett 36:273–279

    Article  Google Scholar 

  55. Sharmila VG, Kavitha S, Obulisamy PK, Banu JR (2020) Production of fine chemicals from food wastes. In: Food waste to valuable resources. Elsevier, pp 163–188

    Google Scholar 

  56. Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111

    Article  Google Scholar 

  57. Zhang L, Sun X (2014) Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour Technol 171:274–284

    Article  Google Scholar 

  58. Martin-Ryals A, Schideman L, Li P, Wilkinson H, Wagner R (2015) Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresour Technol 189:62–70

    Article  Google Scholar 

  59. Cirne DG, Björnsson L, Alves M, Mattiasson B (2006) Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste. J Chem Technol Biotechnol 81:1745–1752

    Article  Google Scholar 

  60. Sharmila VG, Kumar SA, Banu JR, Yeom IT, Saratale GD (2019) Feasibility analysis of homogenizer coupled solar photo Fenton process for waste activated sludge reduction. J Environ Manage 238:251–256

    Article  Google Scholar 

  61. Nakasaki K, Mimoto H, Tran QNM, Oinuma A (2015) Composting of food waste subjected to hydrothermal pretreatment and inoculated with Paecilomyces sp. FA13. Bioresour Technol 180:40–46

    Article  Google Scholar 

  62. Tripathi AK, Iyer PVR, Kandpal TC, Singh KK (1998) Assessment of availability and costs of some agricultural residues used as feedstocks for biomass gasification and briquetting in india. Energy Convers Mgmt 39:1611–1618

    Article  Google Scholar 

  63. Fagernas L, Johansson A, Wilén C, Sipilä K, Mäkinen T, Helynen S, Daugherty E, den Uil H,Vehlow J, Kåberger T, Rogulska M (2006) Bioenergy in Europe. Opportunities and barriers. Research Notes 2352. Espoo. 118

    Google Scholar 

  64. Tidball R, Bluestein J, Rodroguez S, Knoke R (2010) Cost and performance assumptions for modeling electricity generation technologies, NREL, USA

    Google Scholar 

  65. Tyrol (2000) Contributions ECN biomass to “Developments in thermochemical biomass conversion” Conference, Austria, ECN-RX-00-026. 17–22

    Google Scholar 

  66. Rogers JG, Brammer JG (2012) Estimation of the production cost of fast pyrolysis bio-oil. Biomass Bioenerg 36:208–217

    Article  Google Scholar 

  67. Mohan N, Paroha S, Kumar S (2016) Feasibility of ethanol production in India through alternate feed stocks. Presented during ISSCT XXIX Congress held from 5th to 8th December- 2016 at Thailand

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaliappan Sudalyandi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudalyandi, K., Jeyakumar, R. (2022). Biomass for Biofuel Generation. In: Biofuel Production Using Anaerobic Digestion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3743-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3743-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3742-2

  • Online ISBN: 978-981-19-3743-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics