Skip to main content

Oxides for Photovoltaic Applications

  • Chapter
  • First Online:
Recent Advances in Thin Film Photovoltaics

Abstract

This chapter discusses the detailed understanding of metal oxide (MO) thin films and their applications in the field of photovoltaic (PV) solar cell devices. The chapter begins with the literature survey of photovoltaics and metal oxides and explains the utilization, properties, and growth mechanism of metal oxide in the area of thin-film solar cells (TFSCs). Two major TFSC PV technologies, viz. CdTe and CIGS, have highlighted insight into the fabrication, application of the metal oxides layers to enhance the various solar cell parameters and hence the output power of devices. Application of metal oxides such as front and back contacts by using transparent conducting properties and passivation layer by utilizing insulating properties is extensively covered in the following subsections. Zinc (Zn)-, molybdenum (Mo)-, indium (In)-, and vanadium (V)-based metal oxides are explained including synthesis, stability, and applications at the interface level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA. (2021). World energy outlook 2021. Paris.

    Google Scholar 

  2. Yoshikawa, K., et al. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5), 17032.

    Article  Google Scholar 

  3. Maduraiveeran, G., Sasidharan, M., & Jin, W. (2019). Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 106, 100574.

    Article  Google Scholar 

  4. Ernst, F. (1995). Metal-oxide interfaces. Materials Science and Engineering: R: Reports, 14(3), 97–156.

    Article  Google Scholar 

  5. Day, V. W., & Klemperer, W. G. (1985). Metal oxide chemistry in solution: The early transition metal polyoxoanions. Science, 228(4699), 533–541.

    Article  Google Scholar 

  6. Nicollian, E. H., Brews, J. R., & Nicollian, E. H. (1982). MOS (metal oxide semiconductor) physics and technology (Vol. 1987). Wiley.

    Google Scholar 

  7. Nam, S., et al. (2009). Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proceedings of the National Academy of Sciences, 106(50), 21035–21038.

    Article  Google Scholar 

  8. Dahiya, R. S., et al. (2009). Piezoelectric oxide semiconductor field effect transistor touch sensing devices. Applied Physics Letters, 95(3), 034105.

    Article  Google Scholar 

  9. Ruiz Puigdollers, A., et al. (2017). Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catalysis, 7(10), 6493–6513.

    Article  Google Scholar 

  10. Meixner, H., & Lampe, U. (1996). Metal oxide sensors. Sensors and Actuators B: Chemical, 33(1–3), 198–202.

    Article  Google Scholar 

  11. Schmidt, J., et al. (2008). Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Progress in Photovoltaics: Research and Applications, 16(6), 461–466.

    Article  Google Scholar 

  12. Kephart, J. M., et al. (2018). Sputter-deposited oxides for interface passivation of CdTe photovoltaics. IEEE Journal of Photovoltaics, 8(2), 587–593.

    Article  Google Scholar 

  13. Vermang, B., et al. (2016). Rear surface optimization of CZTS solar cells by use of a passivation layer with nanosized point openings. IEEE Journal of Photovoltaics, 6(1), 332–336.

    Article  Google Scholar 

  14. Casper, P., et al. (2016). Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer. Physica Status Solidi (RRL)—Rapid Research Letters, 10(5), 376–380.

    Google Scholar 

  15. Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32(3), 510–519.

    Article  Google Scholar 

  16. Kwak, J. I., et al. (2020). Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of Hazardous Materials, 392, 122297.

    Article  Google Scholar 

  17. Chaure, N. B., Samantilleke, A. P., & Dharmadasa, I. M. (2003). The effects of inclusion of iodine in CdTe thin films on material properties and solar cell performance. Solar Energy Materials and Solar Cells, 77(3), 303–317.

    Article  Google Scholar 

  18. Green, M. A., et al. (2021). Solar cell efficiency tables (Version 58). Progress in Photovoltaics: Research and Applications, 29(7), 657–667.

    Article  Google Scholar 

  19. Britt, J., & Ferekides, C. (1993). Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 62(22), 2851–2852.

    Google Scholar 

  20. Wu, X. (2004). High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy, 77(6), 803–814.

    Article  Google Scholar 

  21. Gupta, A., & Compaan, A. D. (2004). All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO : Al transparent conducting oxide. Applied Physics Letters, 85(4), 684–686.

    Article  Google Scholar 

  22. Ojo, A. A., & Dharmadasa, I. M. (2016). 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Solar Energy, 136, 10–14.

    Google Scholar 

  23. Sali, D. P., & Chaure, N. B. (2021). Investigation of the effect of annealing conditions on electrodeposited CdTe thin films from non-aqueous bath. Applied Physics A, 127(1), 10.

    Article  Google Scholar 

  24. Chaure, N. B., Chaure, S., & Pandey, R. K. (2008). Cd1−xZnxTe thin films formed by non-aqueous electrochemical route. Electrochimica Acta, 54(2), 296–304.

    Article  Google Scholar 

  25. Chaure, N. B., Chaure, S., & Pandey, R. K. (2004). Investigation of non-aqueous electrodeposited CdS/Cd1−xZnxTe heterojunction solar cells. Solar Energy Materials and Solar Cells, 81(1), 39–60.

    Article  Google Scholar 

  26. Nair, J. P., et al. (1999). Deposition and characterization of CdxHg1−xTe films electroplated from a nonaqueous bath. Journal of Physics and Chemistry of Solids, 60(10), 1693–1703.

    Article  Google Scholar 

  27. Gessert, T. A., et al. (2010). Comparison of CdS/CdTe superstrate and substrate devices fabricated with a ZnTe:Cu contact interface. In 2010 35th IEEE Photovoltaic Specialists Conference.

    Google Scholar 

  28. Adirovich, E., Yuabov, Y., & Yagudaev, G. (1969). Photo-electric phenomena in film diodes with cadmium telluride-cadmium sulphide heterojunctions. Fiz Tekhn Poluprov, 3(1), 81–85.

    Google Scholar 

  29. Bonnet, D., Henrichs, B., & Richter, H. (1992). Some phenomena in CdTe/CdS thin film solar cells made by close-spaced sublimation. International journal of solar energy, 12(1–4), 133–136.

    Article  Google Scholar 

  30. Bosio, A., et al. (2006). Polycrystalline CdTe thin films for photovoltaic applications. Progress in Crystal Growth and Characterization of Materials, 52(4), 247–279.

    Article  Google Scholar 

  31. Yoo, J., et al. (2005). High transmittance and low resistive ZnO: Al films for thin film solar cells. Thin Solid Films, 480–481, 213–217.

    Article  Google Scholar 

  32. Lee, C.-S., & Ahn, B. T. (2011). Improved optical transmittance of boron doped ZnO thin films by low pressure chemical vapor deposition with pulse boron doping. Journal of The Electrochemical Society, 158, 001294–001297.

    Google Scholar 

  33. Kang, H.-I., & Lee, K.-I. (2010). Optical and electrical properties of aluminum and boron co-doped zinc thin films as functions of the substrate temperature. Journal of The Korean Physical Society—Journal of Korean Physics Social, 57.

    Google Scholar 

  34. Hirata, G. A., et al. (1996). High transmittance–low resistivity ZnO: Ga films by laser ablation. Journal of Vacuum Science & Technology A, 14(3), 791–794.

    Article  Google Scholar 

  35. Yang, L.-C., et al. (2020). Tailoring bandgap and electrical properties of magnesium-doped aluminum zinc oxide films deposited by reactive sputtering using metallic mg and Al–Zn targets. Coatings, 10(8).

    Google Scholar 

  36. Socol, G., et al. (2011). High quality amorphous indium zinc oxide thin films synthesized by pulsed laser deposition. Thin Solid Films, 520(4), 1274–1277.

    Article  Google Scholar 

  37. Cao, L., et al. (2011). Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition. Solar Energy Materials and Solar Cells, 95(3), 894–898.

    Article  Google Scholar 

  38. Das, A. K., Misra, P., & Kukreja, L. M. (2009). Effect of Si doping on electrical and optical properties of ZnO thin films grown by sequential pulsed laser deposition. Journal of Physics D: Applied Physics, 42(16), 165405.

    Article  Google Scholar 

  39. Sharma, R., et al. (2009). Investigations of highly conducting and transparent Sc doped ZnO films grown by the sol-gel process. Materials Science-Poland, 27, 225–237.

    Google Scholar 

  40. Shi, Q., et al. (2014). Growth of high-quality Ga–F codoped ZnO thin films by mid-frequency sputtering. Ceramics International, 40(1, Part A), 211–216.

    Google Scholar 

  41. Lovchinov, K., et al. (2011). Transparent and conductive ZnO thin films doped with V. Energy Procedia, 10, 282–286.

    Article  Google Scholar 

  42. Arita, M., Yamaguchi, M., & Masuda, M. (2004). Electrical and optical properties of germanium-doped zinc oxide thin films. Materials Transactions, 45.

    Google Scholar 

  43. Ye, Z.-Y., et al. (2013). Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Research Letters, 8(1), 108.

    Article  Google Scholar 

  44. Herodotou, S., et al. (2015). The effects of Zr doping on the optical, electrical and microstructural properties of thin ZnO films deposited by atomic layer deposition. Materials (Basel, Switzerland), 8(10), 7230–7240.

    Article  Google Scholar 

  45. Zhang, H., et al. (2011). Preparation and characterization of transparent conducting ZnO:W films by DC magnetron sputtering. Journal of Semiconductors, 32(4).

    Google Scholar 

  46. Oshima, M. (2011). Characteristic of low resistivity fluorine-doped SnO2 thin films grown by spray pyrolysis. Japanese Journal of Applied Physics, 50.

    Google Scholar 

  47. Williamson, B. A. D., et al. (2020). Resonant Ta doping for enhanced mobility in transparent conducting SnO2. Chemistry of Materials, 32(5), 1964–1973.

    Article  Google Scholar 

  48. Ponja, S. D., et al. (2018). Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. Journal of Materials Chemistry C, 6(27), 7257–7266.

    Article  Google Scholar 

  49. Bierwagen, O., & Speck, J. S. (2014). Plasma-assisted molecular beam epitaxy of Sn-doped In2O3: Sn incorporation, structural changes, doping limits, and compensation. Physica Status Solidi, 211(1), 48–53.

    Google Scholar 

  50. Kuo, C.-C., et al. (2010). Thickness dependence of optoelectrical properties of Mo-doped In2O3 films deposited on polyethersulfone substrates by ion-beam-assisted evaporation. Journal of Nanomaterials, 2010, 840316.

    Article  Google Scholar 

  51. Pitchai, P. N., & S. V, Ti doped In2O3 thin films suited for TCO by a cost effective perfume atomizer technique. International Journal of ChemTech Research, 6, 974–4290.

    Google Scholar 

  52. Gupta, R. K., et al. (2008). Electrical and optical properties of high mobility W-doped In2O3 thin films. MRS Online Proceedings Library, 1030(1), 319.

    Google Scholar 

  53. Kittel, C. (2004). Introduction to solid state physics. Wiley.

    Google Scholar 

  54. Kim, H. S., et al. (2008). Effects of oxygen concentration on the electrical properties of ZnO films. Ceramics International, 34(4), 1097–1101.

    Article  Google Scholar 

  55. Wang, X., et al. (2019). Effect of oxygen vacancies on photoluminescence and electrical properties of (2 0 0) oriented fluorine-doped SnO2 films. Materials Science and Engineering: B, 250.

    Google Scholar 

  56. Kaleemulla, S., et al. (2009). Physical properties of In2O3 thin films prepared at various oxygen partial pressures. Journal of Alloys and Compounds, 479(1–2), 589–593.

    Article  Google Scholar 

  57. Memarian, N., et al. (2010). Characterization of SnO2: F thin films deposited by an economic spray pyrolysis technique. Physica Status Solidi, 7, 2277–2281.

    Google Scholar 

  58. Zhu, B. L., et al. (2017). Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere. Ceramics International, 43(13), 10288–10298.

    Article  Google Scholar 

  59. Napi, M. L., et al. (2016). Fabrication of fluorine doped tin oxide (FTO) thin filmsusing spray pyrolysis deposition methodfor transparent conducting oxide. Journal of Engineering and Applied Sciences, 11, 8800–8804.

    Google Scholar 

  60. Shao, M., et al. (1996). Radio-frequency-magnetron-sputtered CdS/CdTe solar cells on soda-lime glass. Applied Physics Letters, 69(20), 3045–3047.

    Article  Google Scholar 

  61. Ren, S., et al. (2019). Interface modification to enhance electron extraction by deposition of a ZnMgO buffer on SnO2-coated FTO in CdTe solar cells. Solar Energy, 177, 545–552.

    Article  Google Scholar 

  62. Özgür, Ü., et al. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301.

    Article  Google Scholar 

  63. Perrenoud, J., et al. (2011). The use of aluminium doped ZnO as transparent conductive oxide for CdS/CdTe solar cells. Thin Solid Films, 519(21), 7444–7448.

    Article  Google Scholar 

  64. Guo, M., et al. (2015). Optical losses of CdS films on FTO, ITO, and AZO electrodes in CdTe–HgCdTe tandem solar cells. Journal of Materials Science: Materials in Electronics, 26(10), 7607–7613.

    Google Scholar 

  65. Crossay, A., et al. (2012). Spray-depsosited Al-doped ZnO transparent contacts for CdTe solar cells. Solar Energy Materials and Solar Cells, 101, 283–288.

    Article  Google Scholar 

  66. Von Roedern, B., & Bauer, G. H. (1999). Material requirements for buffer layers used to obtain solar cells with high open circuit voltages. MRS Online Proceedings Library, 557(1), 761–766.

    Article  Google Scholar 

  67. Ferekides, C. S., et al. (2005). Transparent conductors and buffer layers for CdTe solar cells. Thin Solid Films, 480–481, 224–229.

    Article  Google Scholar 

  68. Polivtseva, S., et al. (2018). Pulsed laser deposition of Zn(O, Se) layers for optoelectronic application. Acs Applied Energy Materials, 1(11), 6505–6512.

    Article  Google Scholar 

  69. Xiao, D., et al. (2017). CdTe thin film solar cell with NiO as a back contact buffer layer. Solar Energy Materials and Solar Cells, 169, 61–67.

    Article  Google Scholar 

  70. Kartopu, G., et al. (2019). Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer. Solar Energy Materials and Solar Cells, 191, 78–82.

    Article  Google Scholar 

  71. Hernandez-Rodriguez, E., et al. (2016). Application of sputtered TiO2 thin films as HRT buffer layer for high efficiency CdS/CdTe solar cells. Solar Energy, 132, 64–72.

    Article  Google Scholar 

  72. Mutalikdesai, A., & Ramasesha, S. K. (2017). Solution process for fabrication of thin film CdS/CdTe photovoltaic cell for building integration. Thin Solid Films, 632, 73–78.

    Article  Google Scholar 

  73. Liu, T., et al. (2013). Interface study of ITO/ZnO and ITO/SnO2 complex transparent conductive layers and their effect on CdTe solar cells. International Journal of Photoenergy, 2013, 765938.

    Google Scholar 

  74. Gordillo, G. (2002). New materials used as optical window in thin film solar cells. Surface Review and Letters, 9(5–6), 1675–1680.

    Article  Google Scholar 

  75. Liu, H., et al. (2015). Solution processed CdTe/CdSe nanocrystal solar cells with more than 5.5% efficiency by using an inverted device structure. Journal of Materials Chemistry C, 3(17), 4227–4234.

    Google Scholar 

  76. Cha, E. S., et al. (2017). Short-circuit current improvement in CdTe solar cells by combining a ZnO buffer layer and a solution back contact. Current Applied Physics, 17(1), 47–54.

    Article  Google Scholar 

  77. Williams, B. L., et al. (2014). Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Solar Energy Materials and Solar Cells, 124, 31–38.

    Article  Google Scholar 

  78. Balashangar, K., et al. (2015). The effect of surface roughness of substrates on the performance of polycrystalline Cadmium Sulfide/Cadmium Telluride solar cells. Journal of Nanoelectronics and Optoelectronics, 10(4), 435–439.

    Article  Google Scholar 

  79. Colegrove, E., et al. (2012). High-efficiency polycrystalline CdS/CdTe solar cells on buffered commercial TCO-coated glass. Journal of Electronic Materials, 41(10), 2833–2837.

    Article  Google Scholar 

  80. Shen, K., et al. (2017). High quality CdS/CdTe P-N junction diode with a noncontinuous resistive SnO2 buffer layer. IEEE Journal of Photovoltaics, 7(6), 1761–1766.

    Article  Google Scholar 

  81. Krishnakumar, V., Klein, A., & Jaegermann, W. (2013). Studies on CdTe solar cell front contact properties using X-ray photoelectron spectroscopy. Thin Solid Films, 545, 548–557.

    Article  Google Scholar 

  82. Jiménez Olarte, D., et al. (2017). Improvement of the electrical properties of the frontal contact in CdS/CdTe solar cells. Materials Research Express, 4(10), 105906.

    Article  Google Scholar 

  83. Mohamad Shahimin, M., & Mazalan, M. (2011). Simulation of cadmium telluride solar cells structure, 392–396.

    Google Scholar 

  84. Kumar, S. G., & Rao, K. S. R. K. (2014). Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: Fundamental and critical aspects. Energy & Environmental Science, 7(1), 45–102.

    Article  MathSciNet  Google Scholar 

  85. Qadri, S. B., et al. (2000). Transparent conducting films of In2O3–ZrO2, SnO2–ZrO2 and ZnO–ZrO2. Thin Solid Films, 377–378, 750–754.

    Article  Google Scholar 

  86. Shen, K., et al. (2016). Stable CdTe solar cell with V2O5 as a back contact buffer layer. Solar Energy Materials and Solar Cells, 144, 500–508.

    Article  Google Scholar 

  87. Heisler, C., et al. (2013). Transparent CdTe solar cells with a ZnO: Al back contact. Thin Solid Films, 548, 627–631.

    Article  Google Scholar 

  88. Duenow, J. N., et al. (2009). Comparison of transparent back contacts for CdTe top cells in tandem thin-film photovoltaic devices. In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

    Google Scholar 

  89. Bullett, D. W. (1980). The energy band structure of V2O5: A simpler theoretical approach. Journal of Physics C: Solid State Physics, 13(23), L595–L599.

    Article  Google Scholar 

  90. Hermann, K., et al. (1999). Properties and identification of oxygen sites at the V2O5(010) surface: Theoretical cluster studies and photoemission experiments. Journal of Electron Spectroscopy and Related Phenomena, 98–99, 245–256.

    Article  Google Scholar 

  91. Kuddus, A., et al. (2019). Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices and Microstructures, 132, 106168.

    Article  Google Scholar 

  92. Paudel, N. R., Xiao, C., & Yan, Y. (2015). CdS/CdTe thin-film solar cells with Cu-free transition metal oxide/Au back contacts. Progress in Photovoltaics: Research and Applications, 23(4), 437–442.

    Article  Google Scholar 

  93. Guo, Y., & Robertson, J. (2014). Origin of the high work function and high conductivity of MoO3. Applied Physics Letters, 105(22), 222110.

    Article  Google Scholar 

  94. Paudel, N. R., & Yan, Y. (2014). Valence band offset at MoO<inf>3</inf>/CdTe interface probed by X-ray photoelectron spectroscopy. In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

    Google Scholar 

  95. Lin, H., et al. (2010). CdS/CdTe solar cells with MoOx as back contact buffers. Applied Physics Letters, 97(12), 123504.

    Article  Google Scholar 

  96. Gretener, C., et al. (2013). CdTe/CdS thin film solar cells grown in substrate configuration. Progress in Photovoltaics, 21(8), 1580–1586.

    Article  Google Scholar 

  97. Dang, H. M., & Singh, V. P. (2015). Nanowire CdS-CdTe solar cells with molybdenum oxide as contact. Scientific Reports, 5, 7.

    Google Scholar 

  98. Dullweber, T., et al. (2000). Study of the effect of gallium grading in Cu(In, Ga)Se2. Thin Solid Films, 361, 478–481.

    Article  Google Scholar 

  99. Seyrling, S., et al. (2009). CuIn1−xGaxSe2 photovoltaic devices for tandem solar cell application. Thin Solid Films, 517(7), 2411–2414.

    Article  Google Scholar 

  100. Shen, H., et al. (2018). Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy & Environmental Science, 11(2), 394–406.

    Google Scholar 

  101. Ong, K. H., et al. (2018). Review on substrate and molybdenum back contact in CIGS thin film solar cell. International Journal of Photoenergy, 2018, 1–14.

    Article  Google Scholar 

  102. Orgassa, K., Schock, H. W., & Werner, J. H. (2003). Alternative back contact materials for thin film Cu(In, Ga)Se2 solar cells. Thin Solid Films, 431–432, 387–391.

    Article  Google Scholar 

  103. Gouillart, L., et al. (2020). Reflective back contacts for ultrathin Cu(In, Ga)Se2-based solar cells. IEEE Journal of Photovoltaics, 10(1), 250–254.

    Article  Google Scholar 

  104. Bellini, E. (2021). Swiss scientists achieve 21.4% efficiency for flexible CIGS solar cell. PV Magzine.

    Google Scholar 

  105. Zhao, B., et al., Flexible polymer solar cells with power conversion efficiency of 8.7%. Journal of Materials Chemistry C, 2(26), 5077–5082.

    Google Scholar 

  106. Hartmann, M., et al. (2000). Flexible and light weight substrates for Cu(In,Ga)Se2 solar cells and modules. In Conference Record of the IEEE Photovoltaic Specialists Conference (pp. 638–641).

    Google Scholar 

  107. Wang, Y.-C., Wu, T.-T., & Chueh, Y.-L. (2019). A critical review on flexible Cu(In, Ga)Se2 (CIGS) solar cells. Materials Chemistry and Physics, 234, 329–344.

    Article  Google Scholar 

  108. Reinhard, P., et al. (2013). Review of progress toward 20% efficiency flexible cigs solar cells and manufacturing issues of solar modules. IEEE Journal of Photovoltaics, 3(1), 572–580.

    Article  Google Scholar 

  109. Batchelor, W. K., et al. (2002). Substrate and back contact effects in CIGS devices on steel foil. In Conference Record of the IEEE Photovoltaic Specialists Conference (pp. 716–719).

    Google Scholar 

  110. Gledhill, S., et al. (2011). Spray pyrolysis of barrier layers for flexible thin film solar cells on steel. Solar Energy Materials and Solar Cells, 95(2), 504–509.

    Article  Google Scholar 

  111. Murakami, N., et al. (2011). Monolithically integrated CIGS sub-modules fabricated on new-structured flexible substrates. In Conference Record of the IEEE Photovoltaic Specialists Conference (pp. 001310–001313).

    Google Scholar 

  112. Satoh, T., et al. (2003). Cu(In, Ga)Se2 solar cells on stainless steel substrates covered with insulating layers. Solar Energy Materials and Solar Cells, 75(1–2), 65–71.

    Article  Google Scholar 

  113. Hsu, C. H., et al. (2011). Effects of working pressure on CIGS thin films deposited by sputtering from a single quaternary target. In Conference Record of the IEEE Photovoltaic Specialists Conference (pp. 000379–000381).

    Google Scholar 

  114. Bi, J., et al. (2017). Three-step vapor Se/N2/vapor Se reaction of electrodeposited Cu/In/Ga precursor for preparing CuInGaSe2 thin films. Solar Energy Materials and Solar Cells, 159, 352–361.

    Article  Google Scholar 

  115. Venkatachalam, M., et al. (2008). Effect of annealing on the structural properties of electron beam deposited CIGS thin films. Thin Solid Films, 516(20), 6848–6852.

    Article  Google Scholar 

  116. Rohom, A. B., et al. (2016). Study of electrochemically grown copper indium diselenide (CIS) thin films for photovoltaic applications. Journal of Materials Science: Materials in Electronics, 27(12), 12374–12384.

    Google Scholar 

  117. Brown, G., et al. (2012). Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil. In Conference Record of the IEEE Photovoltaic Specialists Conference (pp. 3230–3233).

    Google Scholar 

  118. Chirila, A., et al. (2013). Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12(12), 1107–1111.

    Article  Google Scholar 

  119. Siebentritt, S., et al. (2013). Why do we make Cu(In, Ga)Se2 solar cells non-stoichiometric? Solar Energy Materials and Solar Cells, 119, 18–25.

    Article  Google Scholar 

  120. Nakamura, M., et al. (2019). Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 9(6), 1863–1867.

    Google Scholar 

  121. Shin, B. K., et al. (2011). Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells. Solar Energy Materials and Solar Cells, 95(9), 2650–2654.

    Article  Google Scholar 

  122. Yoo, J. B., Fahrenbruch, A. L., & Bube, R. H. (1990). Transport mechanisms in ZnO/CdS/CuInSe2solar cells. Journal of Applied Physics, 68(9), 4694–4699.

    Article  Google Scholar 

  123. Ishizuka, S., et al. (2005). Fabrication of wide-gap Cu(In1−xGax)Se2 thin film solar cells: A study on the correlation of cell performance with highly resistive i-ZnO layer thickness. Solar Energy Materials and Solar Cells, 87(1–4), 541–548.

    Article  Google Scholar 

  124. Ramanathan, K., et al. (2003). Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 11(4), 225–230.

    Google Scholar 

  125. Jackson, P., et al. (2015). Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica Status Solidi (RRL)—Rapid Research Letters, 9(1), 28–31.

    Google Scholar 

  126. Powalla, M., et al. (2013). High-efficiency Cu(In, Ga)Se2 cells and modules. Solar Energy Materials and Solar Cells, 119, 51–58.

    Article  Google Scholar 

  127. Williams, B. L., et al. (2015). Identifying parasitic current pathways in CIGS solar cells by modelling darkJ-Vresponse. Progress in Photovoltaics: Research and Applications, 23(11), 1516–1525.

    Article  Google Scholar 

  128. Williams, B. L., et al. (2016). The competing roles of i-ZnO in Cu(In, Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 157, 798–807.

    Article  Google Scholar 

  129. Nagoya, Y., et al. (2003). Improved performance of Cu(In, Ga)Se2-based submodules with a stacked structure of ZnO window prepared by sputtering. Solar Energy Materials and Solar Cells, 75(1–2), 163–169.

    Article  Google Scholar 

  130. Platzer-Björkman, C., et al. (2003). Interface study of CuInSe2/ZnO and Cu(In, Ga)Se2/ZnO devices using ALD ZnO buffer layers. Thin Solid Films, 431–432, 321–325.

    Article  Google Scholar 

  131. Moret, M., et al. (2014). Atomic layer deposition of zinc oxide for solar cell applications. Superlattices and Microstructures, 75, 477–484.

    Article  Google Scholar 

  132. Malm, U., et al. (2005). Determination of dominant recombination paths in Cu(In, Ga)Se2 thin-film solar cells with ALD–ZnO buffer layers. Thin Solid Films, 480–481, 208–212.

    Article  Google Scholar 

  133. Frantz, J. A., et al. (2016). Quaternary sputtered Cu(In, Ga)Se2 absorbers for photovoltaics: a review. IEEE Journal of Photovoltaics, 6(4), 1036–1050.

    Article  MathSciNet  Google Scholar 

  134. Izquierdo-Roca, V., et al. (2011). Process monitoring of chalcopyrite photovoltaic technologies by Raman spectroscopy: An application to low cost electrodeposition based processes. New Journal of Chemistry, 35(2), 453–460.

    Article  Google Scholar 

  135. Zhang, T., et al. (2016). High efficiency solution-processed thin-film Cu(In, Ga)(Se, S)2solar cells. Energy & Environmental Science, 9(12), 3674–3681.

    Article  Google Scholar 

  136. Li, B.-Y., Liu, F.-F., & Lin, L. (2020). Sn doped ZnO thin films as high resistivity window layer for Cu(In, Ga)Se2 solar cells. Optoelectronics Letters, 16(6), 451–454.

    Article  Google Scholar 

  137. Löckinger, J., et al. (2018). ALD-ZnxTiyO as window layer in Cu(In, Ga)Se2 solar cells. ACS Applied Materials & Interfaces, 10(50), 43603–43609.

    Article  Google Scholar 

  138. Nakada, T., Hirabayashi, Y., & Tokado, T. (2002). Cu(In1-x, Gax)Se2-based thin film solar cells using transparent conducting back contacts. Japanese Journal of Applied Physics, 41(Part 2, No. 11A), L1209–L1211.

    Google Scholar 

  139. Mavlonov, A., et al. (2020). Superstrate-type flexible and bifacial Cu(In, Ga)Se2 thin-film solar cells with In2O3:SnO2 back contact. Solar Energy, 211, 725–731.

    Article  Google Scholar 

  140. Londhe, P. U., et al. (2018). Development of superstrate CuInGaSe2 thin film solar cells with low-cost electrochemical route from nonaqueous bath. ACS Sustainable Chemistry & Engineering, 6(4), 4987–4995.

    Article  Google Scholar 

  141. Search, H., et al. (1998). Superstrate-type Cu ( In, Ga ) Se2 thin film solar cells with ZnO buffer layers superstrate-type Cu ( In, Ga ) Se2 thin film solar cells with ZnO buffer layers. Japanese Journal of Applied Physics, 37, 499–501.

    Article  Google Scholar 

  142. Hagiwara, Y., Nakada, T., & Kunioka, A. (2001). Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO: B window layer. Solar Energy Materials and Solar Cells, 67(1–4), 267–271.

    Article  Google Scholar 

  143. Jäger, T., et al. (2015). Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes. Journal of Applied Physics, 117(22).

    Google Scholar 

  144. Rao, K. N. (2004). Optical and electrical properties of indium-tin oxide films. Indian Journal of Pure & Applied Physics, 42(March), 201–204.

    Google Scholar 

  145. Rashid, H., et al. (2019). Physical and electrical properties of molybdenum thin films grown by DC magnetron sputtering for photovoltaic application. Results in Physics, 14.

    Google Scholar 

  146. Shigesato, Y., Takaki, S., & Haranoh, T. (1992). Electrical and structural properties of low resistivity tin-doped indium oxide films. Journal of Applied Physics, 71(7), 3356–3364.

    Article  Google Scholar 

  147. Tuna, O., et al., High quality ITO thin films grown by dc and RF sputtering without oxygen. Journal of Physics D-Applied Physics, 43(5).

    Google Scholar 

  148. Karasawa, T., & Miyata, Y. (1993). Electrical and optical-properties of indium tin oxide thin-films deposited on unheated substrates by DC reactive sputtering. Thin Solid Films, 223(1), 135–139.

    Article  Google Scholar 

  149. Terzini, E., Thilakan, P., & Minarini, C. (2000). Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature. Materials Science And Engineering B-Solid State Materials For Advanced Technology, 77(1), 110–114.

    Article  Google Scholar 

  150. Sheu, J. K., et al. (1998). Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN. Applied Physics Letters, 72(25), 3317–3319.

    Article  Google Scholar 

  151. Raoufi, D., et al. (2007). Surface characterization and microstructure of ITO thin films at different annealing temperatures. Applied Surface Science, 253(23), 9085–9090.

    Article  Google Scholar 

  152. Kim, H., et al. (1999). Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. Journal of Applied Physics, 86(11), 6451–6461.

    Article  Google Scholar 

  153. Gouillart, L., et al. (2019). Development of reflective back contacts for high-efficiency ultrathin Cu(In, Ga)Se2 solar cells. Thin Solid Films, 672, 1–6.

    Article  Google Scholar 

  154. Nakada, T., et al. (2003). Cu(In1-x,Gax)Se2 thin film solar cells using transparent conducting oxide back contacts for bifacial and tandem solar cells. In Proceedings of 3rd World Conference on Photovoltaic Energy Conversion.

    Google Scholar 

  155. Nakada, T., et al. (2004). Novel device structure for Cu(In, Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts. Solar Energy, 77(6), 739–747.

    Article  Google Scholar 

  156. Mollica, F., et al. (2017). Light absorption enhancement in ultra-thin Cu(In, Ga)Se2 solar cells by substituting the back-contact with a transparent conducting oxide based reflector. Thin Solid Films, 633, 202–207.

    Article  Google Scholar 

  157. Kwak, W. C., et al. (2010). Electrodeposition of Cu(In, Ga)Se-2 crystals on high-density CdS nanowire arrays for photovoltaic applications. Crystal Growth and Design, 10(12), 5297–5301.

    Article  Google Scholar 

  158. Shin, M. J., et al. (2019). Semi-transparent photovoltaics using ultra-thin Cu(In, Ga)Se-2 absorber layers prepared by single-stage co-evaporation. Solar Energy, 181, 276–284.

    Article  Google Scholar 

  159. Jackson, P., et al. (2007). High quality baseline for high efficiency, Cu(In1−x, Gax)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 15(6), 507–519.

    Article  Google Scholar 

  160. Duenow, J. N., et al. (2008). Investigation of Zno: Al doping level and hydrogen growth ambient effects on CIGS solar cell performance. Conference Record of the IEEE Photovoltaic Specialists Conference, 1012, 1–6.

    Google Scholar 

  161. Son, Y.-S., et al. (2019). Control of structural and electrical properties of indium tin oxide (ITO)/Cu(In, Ga)Se2 interface for transparent back-contact applications. The Journal of Physical Chemistry C, 123(3), 1635–1644.

    Article  Google Scholar 

  162. Bel Hadj Tahar, R., et al. (1998). Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics, 83(5), 2631–2645.

    Google Scholar 

  163. Islam, M. M., et al. (2011). Thickness study of Al:ZnO film for application as a window layer in Cu(In1−xGax)Se2 thin film solar cell. Applied Surface Science, 257(9), 4026–4030.

    Article  Google Scholar 

  164. Jager-Waldau, et al. (2014). Gallium doped ZnO for thin film solar cells. In Institute of Physics Conference Series, No 162: Chapter 10, 1998

    Google Scholar 

  165. Kushiya, K., et al. (1999). Application of stacked ZnO Films as a Window Layer to Cu(InGa)Se2-based thin-film modules. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 38(7 B), 3997–4001.

    Google Scholar 

  166. Assunção, V., et al. (2003). Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films, 427(1–2), 401–405.

    Google Scholar 

  167. Kobayashi, T., et al. (2013). Cu(In, Ga)Se2 thin film solar cells with a combined ALD-Zn(O, S) buffer and MOCVD-ZnO: B window layers. Solar Energy Materials and Solar Cells, 119, 129–133.

    Article  Google Scholar 

  168. Kobayashi, T., et al. (2012). Transparent conducting ZnO:B thin films grown by ultraviolet light assisted metal organic chemical vapor deposition using Triethylboron for Cu(In,Ga)Se2 solar cells. Japanese Journal of Applied Physics, 51.

    Google Scholar 

  169. Sang, B., et al. (2001). Performance improvement of CIGS-based modules by depositing high-quality Ga-doped ZnO windows with magnetron sputtering. Solar Energy Materials and Solar Cells, 67(1–4), 237–245.

    Article  Google Scholar 

  170. Sang, B., et al. (2003). MOCVD-ZnO windows for 30 cm × 30 cm CIGS-based modules. Solar Energy Materials and Solar Cells, 75(1–2), 179–184.

    Article  Google Scholar 

  171. Kobayashi, T., Yamauchi, K., & Nakada, T. (2012). Comparison of cell performance of ZnS(O,OH)/CIGS solar cells with UV-assisted MOCVD-ZnO:B and sputter-deposited ZnO:Al window layers. In Conference Record of the IEEE Photovoltaic Specialists Conference, 2012(PART 2).

    Google Scholar 

  172. Friedlmeier, T. M., et al. (2015). Improved photocurrent in Cu(In,Ga)Se2 solar cells: From 20.8% to 21.7% efficiency with CdS Buffer and 21.0% Cd-Free. IEEE Journal of Photovoltaics, 5(5), 1487–1491.

    Google Scholar 

  173. Bhattacharya, R. N., et al. (2000). 15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films. Thin Solid Films, 361, 396–399.

    Google Scholar 

  174. Ennaoui, A., et al. (1998). Chemical-bath ZnO buffer layer for CuInS2 thin-film solar cells. Solar Energy Materials and Solar Cells, 54(1–4), 277–286.

    Article  Google Scholar 

  175. Kushiya, K., et al. (1996). Application of Zn-compound buffer layer for polycrystalline CuInSe2-based thin-film solar cells. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 35(8), 4383–4388.

    Google Scholar 

  176. Kim, S., et al. (2015). Understanding the light soaking effect of ZnMgO buffer in CIGS solar cells. Physical Chemistry Chemical Physics: PCCP, 17(29), 19222–19229.

    Article  Google Scholar 

  177. Marlein, J., Decock, K., & Burgelman, M. (2009). Analysis of electrical properties of CIGSSe and Cd-free buffer CIGSSe solar cells. Thin Solid Films, 517(7), 2353–2356.

    Article  Google Scholar 

  178. Nakada, T., & Mizutani, M. (2002). 18% Efficiency Cd-Free Cu(In, Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Japanese Journal of Applied Physics, 41(Part 2, No. 2B), L165–L167.

    Google Scholar 

  179. Kobayashi, T., et al. (2014). Post-treatment effects on ZnS(O, OH)/Cu(In, Ga)Se2 solar cells deposited using thioacetamide-ammonia based solution. Solar Energy Materials and Solar Cells, 123, 197–202.

    Article  Google Scholar 

  180. Salome, P. M. P., et al. (2017). Influence of CdS and ZnSnO buffer layers on the photoluminescence of Cu(In, Ga)Se $_2$ Thin Films. IEEE Journal of Photovoltaics, 7(2), 670–675.

    Google Scholar 

  181. Salomé, P. M. P., et al. (2017). CdS and Zn1−xSnxOy buffer layers for CIGS solar cells. Solar Energy Materials and Solar Cells, 159, 272–281.

    Article  Google Scholar 

  182. Rousset, J., et al. (2011). High efficiency cadmium free Cu(In, Ga)Se2 thin film solar cells terminated by an electrodeposited front contact. Solar Energy Materials and Solar Cells, 95(6), 1544–1549.

    Article  Google Scholar 

  183. Hubert, C., et al. (2008). A better understanding of the growth mechanism of Zn(S,O,OH) chemical bath deposited buffer layers for high efficiency Cu(In,Ga)(S,Se)2solar cells. Physica Status Solidi (a), 205(10), 2335–2339.

    Google Scholar 

  184. Bhattacharya, R. N., Contreras, M. A., & Teeter, G. (2004). 18.5% copper indium gallium diselenide (CIGS) device using single-layer, chemical-bath-deposited ZnS(O,OH). Japanese Journal of Applied Physics, 43(No. 11B), L1475–L1476.

    Google Scholar 

  185. Contreras, M. A., et al. (2003). ZnO/ZnS(O,OH)/Cu(In,Ga)Se/sub 2//Mo solar cell with 18.6% efficiency. In Proceedings of 3rd World Conference on Photovoltaic Energy Conversion.

    Google Scholar 

  186. Hariskos, D., et al. (2009). The Zn(S, O, OH)/ZnMgO buffer in thin-film Cu(In, Ga)(Se, S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In, Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 17(7), 479–488.

    Article  Google Scholar 

  187. Kushiya, K., et al. (2009). Interface control to enhance the fill factor over 0.70 in a large-area CIS-based thin-film PV technology. Thin Solid Films, 517(7), 2108–2110.

    Google Scholar 

  188. Bär, M., et al. (2006). Formation of a ZnS/Zn(S, O) bilayer buffer on CuInS 2 thin film solar cell absorbers by chemical bath deposition. Journal of Applied Physics, 99(12).

    Google Scholar 

  189. Ennaoui, A., et al. (2006). Highly-efficient Cd-free CuInS2 thin-film solar cells and mini-modules with Zn(S, O) buffer layers prepared by an alternative chemical bath process. Progress in Photovoltaics: Research and Applications, 14, 499–511.

    Article  Google Scholar 

  190. Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 23.35%. 2019, Solar Frontier: Internet

    Google Scholar 

  191. Diermann, R. (2021). Avancis claims 19.64% efficiency for CIGS module. PV Magzine.

    Google Scholar 

  192. Witte, W., Hariskos, D., & Powalla, M. (2011). Comparison of charge distributions in CIGS thin-film solar cells with ZnS/(Zn, Mg)O and CdS/i-ZnO buffers. Thin Solid Films, 519, 7549–7552.

    Article  Google Scholar 

  193. Platzer-Björkman, C., et al. (2006). Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient. Journal of Applied Physics, 100(4).

    Google Scholar 

  194. Grimm, A., et al. (2010). Sputtered Zn(O,S) for junction formation in chalcopyrite-based thin film solar cells. Physica Status Solidi (RRL)—Rapid Research Letters, 4(5–6), 109–111.

    Google Scholar 

  195. Li, J. V., et al. (2009). Influence of sputtering a ZnMgO window layer on the interface and bulk properties of Cu(In,Ga)Se2 solar cells. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27(6).

    Google Scholar 

  196. Wang, S., et al. (2017). Bandgap tunable Zn1−xMgxO thin films as electron transport layers for high performance quantum dot light-emitting diodes. Journal of Materials Chemistry C, 5(19), 4724–4730.

    Article  Google Scholar 

  197. Lee, C.-S., et al. (2014). Performance improvement in Cd-free Cu(In,Ga)Se2 solar cells by modifying the electronic structure of the ZnMgO buffer layer. RSC Advances, 4(69).

    Google Scholar 

  198. Nishimura, T., et al. (2020). Interfacial modification mechanism by aging effect for high-performance Cd-free and all-dry process Cu(In, Ga)(S, Se) solar cells. Applied Physics Letters, 117(22), 223501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandu B. Chaure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desarada, S., Singh, U.P., Chaure, N.B. (2022). Oxides for Photovoltaic Applications. In: Singh, U.P., Chaure, N.B. (eds) Recent Advances in Thin Film Photovoltaics. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3724-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3724-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3723-1

  • Online ISBN: 978-981-19-3724-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics