Skip to main content

Dye Sensitized and Quantum Dot Sensitized Solar Cell

  • Chapter
  • First Online:
Recent Advances in Thin Film Photovoltaics

Abstract

Dye sensitized solar cells (DSSC) are known as promising candidates as an alternative to the costly crystalline solar cell. Although they lag behind silicon or thin-film (CIGS, etc.)-based solar cells for their relatively low efficiency, in terms of cost DSSC stands much ahead of their other counterparts. According to our experience in the persistent efforts that helped to achieve moderately high efficiency of DSSCs. An in-depth review on major progress of improving the energy conversion efficiency of DSSCs is required which may be useful for future research. There are challenges that affect the performance and marketing of DSSCs such as efficiency, stability, cost, and extension to large area with its flexibility as the world is facing for its commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740.

    Article  Google Scholar 

  2. Kawashima, T., Matsui, H., & Tanabe, N. (2003). New transparent conductive films: FTO coated ITO. Thin Solid Films, 445(2), 241–244.

    Article  Google Scholar 

  3. Kaduwal, D., Zimmermann, B., & Würfel, U. (2014). ITO-free laminated concept for flexible organic solar cells. Solar Energy Materials and Solar Cells, 120, 449–453.

    Article  Google Scholar 

  4. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595–6663.

    Article  Google Scholar 

  5. Kim, I. D., Hong, J. M., Lee, B. H., Kim, D. Y., Jeon, E. K., Choi, D. K., & Yang, D. J. (2007). Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats. Applied Physics Letters, 91(16), 163109.

    Article  Google Scholar 

  6. Zhu, S., Shan, L., Tian, X., Zheng, X., Sun, D., Liu, X., Wang, L., & Zhou, Z. (2014). Hydrothermal synthesis of oriented ZnO nanorod–nanosheets hierarchical architecture on zinc foil as flexible photoanodes for dye-sensitized solar cells. Ceramics International, 40(8), 11663–11670.

    Article  Google Scholar 

  7. Golobostanfard, M. R., & Abdizadeh, H. (2014). Hierarchical porous titania/carbon nanotube nanocomposite photoanode synthesized by controlled phase separation for dye sensitized solar cell. Solar Energy Materials and Solar Cells, 120, 295–302.

    Article  Google Scholar 

  8. Satapathi, S., Gill, H. S., Das, S., Li, L., Samuelson, L., Green, M. J., & Kumar, J. (2014). Performance enhancement of dye-sensitized solar cells by incorporating graphene sheets of various sizes. Applied Surface Science, 314, 638–641.

    Article  Google Scholar 

  9. Surana, K., Konwar, S., Singh, P. K., & Bhattacharya, B. (2019). Utilizing reduced graphene oxide for achieving better efficient dye sensitized solar cells. Journal of Alloys and Compounds, 788, 672–676.

    Article  Google Scholar 

  10. Xu, J., Fan, K., Shi, W., Li, K., & Peng, T. (2014). Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Solar Energy, 101, 150–159.

    Article  Google Scholar 

  11. Mehmood, U., Hussein, I. A., Harrabi, K., Mekki, M. B., Ahmed, S., & Tabet, N. (2015). Hybrid TiO2–multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs). Solar Energy Materials and Solar Cells, 140, 174–179.

    Article  Google Scholar 

  12. Wei, L., Chen, S., Yang, Y., Dong, Y., Song, W., & Fan, R. (2016). Reduced graphene oxide modified TiO2 semiconductor materials for dye-sensitized solar cells. RSC Advances, 6(103), 100866–100875.

    Article  Google Scholar 

  13. Jadhav, N. A., Tomar, S. K., Singh, P. K., & Bhattacharya, B. (2015). NanoporousTiO2 and ZnO photoelectrodes: A comparative photovoltaic performance study. International Journal of Electroactive Materials, 3, 1–5.

    Google Scholar 

  14. (a) Yu, X. Y., Lei, B. X., Kuang, D. B., & Su, C. Y. (2011). Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chemical Science, 2(7), 1396–1400. (b) Thavasi, V. R. R. J. S. R. V., Renugopalakrishnan, V., Jose, R., & Ramakrishna, S. (2009). Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering: R: Reports, 63(3), 81–99.

    Google Scholar 

  15. Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J. I., & Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51(88), 15894–15897.

    Article  Google Scholar 

  16. Wang, X. F., Zhan, C. H., Maoka, T., Wada, Y., & Koyama, Y. (2007). Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1′ and c2′ from Undaria pinnatifida (Wakame). Chemical Physics Letters, 447(1–3), 79–85.

    Article  Google Scholar 

  17. Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N., & Grätzel, M. (1993). Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115(14), 6382–6390.

    Article  Google Scholar 

  18. Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., & Grätzel, M. (2005). Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 127(48), 16835–16847.

    Article  Google Scholar 

  19. Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Diau, E. W. G., Yeh, C. Y., Zakeeruddin, S. M., & Grätzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629–634.

    Google Scholar 

  20. Yella, A., Humphry-Baker, R., Curchod, B. F., AshariAstani, N., Teuscher, J., Polander, L. E., Mathew, S., Moser, J. E., Tavernelli, I., Rothlisberger, U., & Grätzel, M. (2013). Molecular engineering of a fluorene donor for dye-sensitized solar cells. Chemistry of Materials, 25(13), 2733–2739.

    Article  Google Scholar 

  21. Do, K., Kim, D., Cho, N., Paek, S., Song, K., & Ko, J. (2012). New type of organic sensitizers with a planar amine unit for efficient dye-sensitized solar cells. Organic letters, 14(1), 222–225.

    Article  Google Scholar 

  22. Kay, A., & Grätzel, M. (1996). Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 44(1), 99–117.

    Article  Google Scholar 

  23. Zhang, S., Yang, X., Numata, Y., & Han, L. (2013). Highly efficient dye-sensitized solar cells: Progress and future challenges. Energy and Environmental Science, 6(5), 1443–1464.

    Article  Google Scholar 

  24. Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., & Lin, Z. (2015). Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 18(3), 155–162.

    Article  Google Scholar 

  25. Wong, H. L., Mak, C. S., Chan, W. K., & Djurišić, A. B. (2007). Efficient photovoltaic cells with wide photosensitization range fabricated from rhenium benzathiazole complexes. Applied physics letters, 90(8), 081107.

    Article  Google Scholar 

  26. Zhang, T. T., Jia, J., & Wu, H. S. (2012). Theoretical studies of COOH group effect on the performance of rhenium (I) tricarbonyl complexes with bispyridine sulfur-rich core ligand as dyes in DSSC. Theoretical Chemistry Accounts, 131(9), 1–8.

    Article  Google Scholar 

  27. Islam, A., Sugihara, H., Hara, K., Singh, L. P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., & Arakawa, H. (2000). New platinum (II) polypyridyl photosensitizers for TiO2 solar cells. New Journal of Chemistry, 24(6), 343–345.

    Article  Google Scholar 

  28. Surana, K., Idris, M. G., & Bhattacharya, B. (2020). Natural dye extraction from Syzygium Cumini and its potential photovoltaic application as economical sensitizer. Applied Nanoscience, 10, 3819–3825.

    Article  Google Scholar 

  29. Chang, H., Kao, M. J., Chen, T. L., Chen, C. H., Cho, K. C., & Lai, X. R. (2013). Characterization of natural dye extracted from wormwood and purple cabbage for dye-sensitized solar cells. International Journal of Photoenergy.

    Google Scholar 

  30. Pathak, C., Surana, K., Shukla, V. K., & Singh, P. K. (2019). Fabrication and characterization of dye sensitized solar cell using natural dyes. Materials Today: Proceedings, 12, 665–670.

    Google Scholar 

  31. Polo, A. S., & Iha, N. Y. M. (2006). Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba. Solar Energy Materials and Solar Cells, 90(13), 1936–1944.

    Article  Google Scholar 

  32. Wongcharee, K., Meeyoo, V., & Chavadej, S. (2007). Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 91(7), 566–571.

    Article  Google Scholar 

  33. Gómez-Ortíz, N. M., Vázquez-Maldonado, I. A., Pérez-Espadas, A. R., Mena-Rejón, G. J., Azamar-Barrios, J. A., & Oskam, G. (2010). Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Solar Energy Materials and Solar Cells, 94(1), 40–44.

    Article  Google Scholar 

  34. Ali, R. A. M., & Nayan, N. (2010). Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit. International Journal of Integrated Engineering, 2(3).

    Google Scholar 

  35. Bazargan, M. H. (2009). Performance of nano structured dye-sensitized solar cell utilizing natural sensitizer operated with platinum and carbon coated counter electrodes. Digest Journal of Nanomaterials and Biostructures, 4(4), 723–727.

    Google Scholar 

  36. Narayan, M., & Raturi, A. (2011). Investigation of some common Fijian flower dyes as photosensitizers for dye sensitized solar cells abstract. Applied Solar Energy, 47(2), 112–117.

    Article  Google Scholar 

  37. Susanti, D., Nafi, M., Purwaningsih, H., Fajarin, R., & Kusuma, G. E. (2014). The preparation of dye sensitized solar cell (DSSC) from TiO2 and tamarillo extract. Procedia Chemistry, 9, 3–10.

    Article  Google Scholar 

  38. Chang, H., Wu, H. M., Chen, T. L., Huang, K. D., Jwo, C. S., & Lo, Y. J. (2010). Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. Journal of Alloys and Compounds, 495(2), 606–610.

    Article  Google Scholar 

  39. Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., & Irwan, Y. M. (2015). Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Procedia, 79, 896–902.

    Article  Google Scholar 

  40. Sönmezoğlu, S., Akyürek, C., & Akin, S. (2012). High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers. Journal of Physics D: Applied Physics, 45(42), 425101.

    Article  Google Scholar 

  41. Calogero, G., Di Marco, G., Cazzanti, S., Caramori, S., Argazzi, R., Di Carlo, A., & Bignozzi, C. A. (2010). Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. International Journal of Molecular Sciences, 11(1), 254–267.

    Article  Google Scholar 

  42. Upadhyay, R., Tripathi, M., Chawla, P., & Pandey, A. (2014). Performance of CeO2–TiO2-admixed photoelectrode for natural dye-sensitized solar cell. Journal of Solid State Electrochemistry, 18(7), 1889–1892.

    Article  Google Scholar 

  43. Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K., & Grätzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6(3), 242–247.

    Article  Google Scholar 

  44. Cao, Y., Liu, Y., Zakeeruddin, S. M., Hagfeldt, A., & Grätzel, M. (2018). Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics. Joule, 2(6), 1108–1117.

    Article  Google Scholar 

  45. Su’ait, M. S., Rahman, M. Y. A., & Ahmad, A. (2015). Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy, 115, 452-470.

    Google Scholar 

  46. Park, S. H., Lim, J., Song, I. Y., Lee, J. R., & Park, T. (2014). Physically stable polymer-membrane electrolytes for highly efficient solid-state dye-sensitized solar cells with long-term stability. Advanced Energy Materials, 4(3), 1300489.

    Article  Google Scholar 

  47. Singh, P. K., Kim, K. I., Park, N. G., & Rhee, H. W. (2007, April). Dye sensitized solar cell using polymer electrolytes based on poly (ethylene oxide) with an ionic liquid. In Macromolecular Symposia (Vol. 249, No. 1, pp. 162–166). Weinheim: WILEY‐VCH Verlag.

    Google Scholar 

  48. Wang, P., Zakeeruddin, S. M., Moser, J. E., & Grätzel, M. (2003). A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. The Journal of Physical Chemistry B, 107(48), 13280–13285.

    Article  Google Scholar 

  49. Katakabe, T., Kawano, R., & Watanabe, M. (2007). Acceleration of redox diffusion and charge-transfer rates in an ionic liquid with nanoparticle addition. Electrochemical and Solid State Letters, 10(6), F23.

    Article  Google Scholar 

  50. Singh, P. K., Nagarale, R. K., Pandey, S. P., Rhee, H. W., & Bhattacharya, B. (2011). Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(2), 023002.

    Google Scholar 

  51. Kalaignan, G. P., & Kang, M. S. (2006). Effects of compositions on properties of PEO–KI–I2 salts polymer electrolytes for DSSC. Solid State Ionics, 177(11–12), 1091–1097.

    Article  Google Scholar 

  52. Trang, T. T., Lee, D. K., & Kim, J. H. (2013). Enhancing the ionic transport of PEO-based composite polymer electrolyte by addition of TiO2 nanofiller for quasi-solid state dye-sensitized solar cells. Metals and Materials International, 19(6), 1369–1372.

    Article  Google Scholar 

  53. Rahman, M. Y. A., Salleh, M. M., Talib, I. A., & Yahaya, M. (2004). Effect of ionic conductivity of a PVC–LiClO4 based solid polymeric electrolyte on the performance of solar cells of ITO/TiO2/PVC–LiClO4/graphite. Journal of power sources, 133(2), 293–297.

    Article  Google Scholar 

  54. Muhammad, F. H., Subban, R. H. Y., & Winie, T. (2019). Solid solutions of hexanoyl chitosan/poly (vinyl chloride) blends and NaI for all-solid-state dye-sensitized solar cells. Ionics, 25(7), 3373–3386.

    Article  Google Scholar 

  55. Roh, D. K., Patel, R., Ahn, S. H., Kim, D. J., & Kim, J. H. (2011). Preparation of TiO2 nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells. Nanoscale, 3(10), 4162–4169.

    Article  Google Scholar 

  56. Kuppu, S. V., Jeyaraman, A. R., Guruviah, P. K., & Thambusamy, S. (2018). Preparation and characterizations of PMMA-PVDF based polymer composite electrolyte materials for dye sensitized solar cell. Current Applied Physics, 18(6), 619–625.

    Article  Google Scholar 

  57. Thomas, M., & Rajiv, S. (2020). Porous membrane of polyindole and polymeric ionic liquid incorporated PMMA for efficient quasi-solid state dye sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 394, 112464.

    Article  Google Scholar 

  58. Xu, T., Li, J., Gong, R., Xi, Z., Huang, T., Chen, L., & Ma, T. (2018). Environmental effects on the ionic conductivity of poly (methyl methacrylate) (PMMA)-based quasi-solid-state electrolyte. Ionics, 24(9), 2621–2629.

    Article  Google Scholar 

  59. Priya, A. S., Subramania, A., Jung, Y. S., & Kim, K. J. (2008). High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF−HFP membrane electrolyte. Langmuir, 24(17), 9816–9819.

    Article  Google Scholar 

  60. Kumar, S., Manikandan, V. S., Palai, A. K., Mohanty, S., & Nayak, S. K. (2019). Fe2O3 as an efficient filler in PVDF-HFP based polymeric electrolyte for dye sensitized solar cell application. Solid State Ionics, 332, 10–15.

    Article  Google Scholar 

  61. Senthil, R. A., Theerthagiri, J., Madhavan, J., & Arof, A. K. (2016). Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells. Optical Materials, 58, 357–364.

    Article  Google Scholar 

  62. Chan, Y. F., Wang, C. C., & Chen, C. Y. (2013). Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-D graphenes incorporated. Journal of Materials Chemistry A, 1(18), 5479–5486.

    Article  Google Scholar 

  63. Arof, A. K., Jun, H. K., Sim, L. N., Kufian, M. Z., & Sahraoui, B. (2013). Gel polymer electrolyte based on LiBOB and PAN for the application in dye-sensitized solar cells. Optical Materials, 36(1), 135–139.

    Article  Google Scholar 

  64. Shah, D. K., Son, Y. H., Lee, H. R., Akhtar, M. S., Kim, C. Y., & Yang, O. B. (2020). A stable gel electrolyte based on poly butyl acrylate (PBA)-co-poly acrylonitrile (PAN) for solid-state dye-sensitized solar cells. Chemical Physics Letters, 754, 137756.

    Article  Google Scholar 

  65. Teo, L. P., Tiong, T. S., Buraidah, M. H., & Arof, A. K. (2018). Effect of lithium iodide on the performance of dye sensitized solar cells (DSSC) using poly (ethylene oxide) (PEO)/poly (vinyl alcohol) (PVA) based gel polymer electrolytes. Optical Materials, 85, 531–537.

    Article  Google Scholar 

  66. Aziz, M. F., Noor, I. M., Sahraoui, B., & Arof, A. K. (2014). Dye-sensitized solar cells with PVA–KI–EC–PC gel electrolytes. Optical and Quantum Electronics, 46(1), 133–141.

    Article  Google Scholar 

  67. Khannam, M., Sharma, S., Dolui, S., & Dolui, S. K. (2016). A graphene oxide incorporated TiO2 photoanode for high efficiency quasi solid state dye sensitized solar cells based on a poly-vinyl alcohol gel electrolyte. RSC Advances, 6(60), 55406–55414.

    Article  Google Scholar 

  68. Kim, J. H., Kang, M. S., Kim, Y. J., Won, J., Park, N. G., & Kang, Y. S. (2004). Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chemical communications, 14, 1662–1663.

    Article  Google Scholar 

  69. Kang, M. S., Kim, J. H., Kim, Y. J., Won, J., Park, N. G., & Kang, Y. S. (2005). Dye-sensitized solar cells based on composite solid polymer electrolytes. Chemical Communications, 7, 889–891.

    Article  Google Scholar 

  70. Arof, A. K., Aziz, M. F., Noor, M. M., Careem, M. A., Bandara, L. R. A. K., Thotawatthage, C. A., Rupasinghe, W. N. S., & Dissanayake, M. A. K. L. (2014). Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. International journal of hydrogen energy, 39(6), 2929–2935.

    Article  Google Scholar 

  71. Boonsin, R., Sudchanham, J., Panusophon, N., Sae-Heng, P., Sae-Kung, C., & Pakawatpanurut, P. (2012). Dye-sensitized solar cell with poly (acrylic acid-co-acrylonitrile)-based gel polymer electrolyte. Materials Chemistry and Physics, 132(2–3), 993–998.

    Article  Google Scholar 

  72. Singh, R., Jadhav, N. A., Majumder, S., Bhattacharya, B., & Singh, P. K. (2013). Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohydrate Polymers, 91(2), 682–685.

    Article  Google Scholar 

  73. Khanmirzaei, M. H., Ramesh, S., & Ramesh, K. (2015). Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Scientific Reports, 5(1), 1–7.

    Article  Google Scholar 

  74. Buraidah, M. H., Teo, L. P., Majid, S. R., & Arof, A. K. (2010). Characteristics of TiO2/solid electrolyte junction solar cells with I-/I3-redox couple. Optical Materials, 32(6), 723–728.

    Article  Google Scholar 

  75. Pavithra, N., Velayutham, D., Sorrentino, A., & Anandan, S. (2017). Thiourea incorporated poly (ethylene oxide) as transparent gel polymer electrolyte for dye sensitized solar cell applications. Journal of Power Sources, 353, 245–253.

    Article  Google Scholar 

  76. Kim, S. S., Nah, Y. C., Noh, Y. Y., Jo, J., & Kim, D. Y. (2006). Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta, 51(18), 3814–3819.

    Article  Google Scholar 

  77. Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., & Abe, E. (2004). Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 570(2), 257–263.

    Article  Google Scholar 

  78. Murakami, T. N., Ito, S., Wang, Q., Nazeeruddin, M. K., Bessho, T., Cesar, I., Liska, P., Humphry-Baker, R., Comte, P., Pechy, P., & Grätzel, M. (2006). Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of the Electrochemical Society, 153(12), A2255.

    Article  Google Scholar 

  79. Lee, K. S., Lee, H. K., Wang, D. H., Park, N. G., Lee, J. Y., Park, O. O., & Park, J. H. (2010). Dye-sensitized solar cells with Pt-and TCO-free counter electrodes. Chemical Communications, 46(25), 4505–4507.

    Article  Google Scholar 

  80. Lee, W. J., Ramasamy, E., Lee, D. Y., & Song, J. S. (2009). Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Applied Materials and Interfaces, 1(6), 1145–1149.

    Article  Google Scholar 

  81. Seo, H. K., Song, M., Ameen, S., Akhtar, M. S., & Shin, H. S. (2013). New counter electrode of hot filament chemical vapor deposited graphene thin film for dye sensitized solar cell. Chemical engineering journal, 222, 464–471.

    Article  Google Scholar 

  82. Al-Bahrani, M. R., Ahmad, W., Mehnane, H. F., Chen, Y., Cheng, Z., & Gao, Y. (2015). Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-micro letters, 7(3), 298–306.

    Article  Google Scholar 

  83. Liu, C. J., Tai, S. Y., Chou, S. W., Yu, Y. C., Chang, K. D., Wang, S., Chien, F. S. S., Lin, J. Y., & Lin, T. W. (2012). Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry, 22(39), 21057–21064.

    Article  Google Scholar 

  84. Khalit, W. N. A. W., Mustafa, M. N., & Sulaiman, Y. (2019). Synergistic effect of poly (3, 4-ethylenedioxythiophene), reduced graphene oxide and aluminium oxide) as counter electrode in dye-sensitized solar cell. Results in Physics, 13, 102355.

    Article  Google Scholar 

  85. Kakroo, S., Surana, K., & Bhattacharya, B. (2020). Electrodeposited MnO2–NiO Composites as a Pt Free Counter Electrode for Dye-Sensitized Solar Cells. Journal of Electronic Materials, 49(3), 2197–2202.

    Article  Google Scholar 

  86. Zaini, M. S., Ying Chyi Liew, J., Alang Ahmad, S. A., Mohmad, A. R., & Kamarudin, M. A. (2020). Quantum confinement effect and photoenhancement of photoluminescence of PbS and PbS/MnS quantum dots. Applied Sciences, 10(18), 6282.

    Google Scholar 

  87. (a) Surana, K., & Bhattacharya, B. (2021). Fluorescence quenching by Förster resonance energy transfer in carbon–cadmium sulfide core-shell quantum dots. ACS Omega, 6(48), 32749–32753. (b) Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381. (c) Bak, S., Kim, D., & Lee, H. (2016). Graphene quantum dots and their possible energy applications: A review. Current Applied Physics, 16(9), 1192-1201.

    Google Scholar 

  88. De Vos, A., & Desoete, B. (1998). On the ideal performance of solar cells with larger-than-unity quantum efficiency. Solar Energy Materials and Solar Cells, 51(3–4), 413–424.

    Article  Google Scholar 

  89. Plass, R., Pelet, S., Krueger, J., Grätzel, M., & Bach, U. (2002). Quantum dot sensitization of organic–inorganic hybrid solar cells. The Journal of Physical Chemistry B, 106(31), 7578–7580.

    Article  Google Scholar 

  90. Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P. V. (2008). Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture. Journal of the American Chemical Society, 130(12), 4007–4015.

    Google Scholar 

  91. Zhu, G., Su, F., Lv, T., Pan, L., & Sun, Z. (2010). Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale Research Letters, 5(11), 1749–1754.

    Article  Google Scholar 

  92. Yu, X. Y., Lei, B. X., Kuang, D. B., & Su, C. Y. (2011). Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chemical Science, 2(7), 1396–1400.

    Article  Google Scholar 

  93. Tulsani, S. R., Rath, A. K., & Late, D. J. (2019). 2D-MoS2 nanosheets as effective hole transport materials for colloidal PbS quantum dot solar cells. Nanoscale Advances, 1(4), 1387–1394.

    Article  Google Scholar 

  94. Wang, L., Feng, J., Tong, Y., & Liang, J. (2019). A reduced graphene oxide interface layer for improved power conversion efficiency of aqueous quantum dots sensitized solar cells. International Journal of Hydrogen Energy, 44(1), 128–135.

    Article  Google Scholar 

  95. Yu, J., Wang, W., Pan, Z., Du, J., Ren, Z., Xue, W., & Zhong, X. (2017). Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A, 5(27), 14124–14133.

    Article  Google Scholar 

  96. Sudhagar, P., Jung, J. H., Park, S., Lee, Y. G., Sathyamoorthy, R., Kang, Y. S., & Ahn, H. (2009). The performance of coupled (CdS: CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochemistry Communications, 11(11), 2220–2224.

    Article  Google Scholar 

  97. Lee, H. J., Bang, J., Park, J., Kim, S., & Park, S. M. (2010). Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: All prepared by successive ionic layer adsorption and reaction processes. Chemistry of Materials, 22(19), 5636–5643.

    Article  Google Scholar 

  98. Lai, Y., Lin, Z., Zheng, D., Chi, L., Du, R., & Lin, C. (2012). CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. Electrochimica Acta, 79, 175–181.

    Article  Google Scholar 

  99. Surana, K., Mehra, R. M., & Bhattacharya, B. (2020). Reduced graphene oxide and graded quantum dots for enhanced photovoltaic performance. Optical Materials, 107, 110092.

    Article  Google Scholar 

  100. Chuang, C. H. M., Brown, P. R., Bulović, V., & Bawendi, M. G. (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature materials, 13(8), 796–801.

    Article  Google Scholar 

  101. Lan, X., Voznyy, O., García de Arquer, F. P., Liu, M., Xu, J., Proppe, A. H., Walters, G., Fan, F., Tan, H., Liu, M., Yang, Z. (2016). 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Letters, 16(7), 4630–4634.

    Google Scholar 

  102. Sanehira, E. M., Marshall, A. R., Christians, J. A., Harvey, S. P., Ciesielski, P. N., Wheeler, L. M., Schulz, P., Lin, L. Y., Beard, M. C., & Luther, J. M. (2017). Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 3(10), eaao4204.

    Google Scholar 

  103. Zou, H., Guo, D., He, B., Yu, J., & Fan, K. (2018). Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots. Applied Surface Science, 430, 625–631.

    Article  Google Scholar 

  104. Paulo, S., Palomares, E., & Martinez-Ferrero, E. (2016). Graphene and carbon quantum dot-based materials in photovoltaic devices: From synthesis to applications. Nanomaterials, 6(9), 157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surana, K., Bhattacharya, B. (2022). Dye Sensitized and Quantum Dot Sensitized Solar Cell. In: Singh, U.P., Chaure, N.B. (eds) Recent Advances in Thin Film Photovoltaics. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3724-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3724-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3723-1

  • Online ISBN: 978-981-19-3724-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics