Skip to main content

CdTe-Based Thin Film Solar Cells: Present Status and Future Developments

  • Chapter
  • First Online:
Recent Advances in Thin Film Photovoltaics

Abstract

CdTe solar cells are the most successful thin film photovoltaic technology of the last ten years. It was one of the first being brought into production together with amorphous silicon (already in the mid 90 s Solar Cells Inc. in USA, Antec Solar and BP Solar in Europe were producing 60 × 120 cm modules), and it is now the largest in production among thin film solar cells. CdTe solar cells stand out for the robustness of the absorber material: its high chemical stability and the large variety of successful preparation methods available make them suitable for large area module production. Compared to other thin film absorber materials, CdTe has an optimum band gap of 1.5 eV so that it could deliver efficiencies above 27%, with an open-circuit voltage of 1 V and a short-circuit current density of 30.5% mA/cm2. In this chapter, we will follow the history of the fabrication process together with each and every improvement explaining the discoveries and achievements that have brought to the record efficiency of 22.1%. Moreover, the environmental impact, the future applications and the possible evolutions of this technology will be also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnet, D., & Rabenhorst, H. (1972). New results on the development of a thin film p-CdTe–n-CdS heterojunction solar cell. In Proceedings of 9th photovoltaic specialists conference (pp. 129–131).

    Google Scholar 

  2. Britt, J., & Ferekides, C.S. (1993). Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 62(22), 2851–2852.

    Google Scholar 

  3. Wu, X., Dhere, R.G., Albin, D.S., Gessert, T. A, Dehart, C., Keane, J.C., Duda, A., Coutts, T.J., Asher, S., Levi, D.H., Moutinho, H.R., Yan, Y., Moriarty, T., Johnston, S., Emery, K., and Sheldon, P. (2001). High-Efficiency CTO/ZTO/CdS/CdTe polycrystalline thin-film solar cells. NCPV Progr. Rev. Meet., (October).

    Google Scholar 

  4. First Solar. (2015). Record 21.5 percent conversion efficiency research cell validates technology roadmap.

    Google Scholar 

  5. Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., & Ho-Baillie, A.W.Y. (2018) Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications.

    Google Scholar 

  6. Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2020). Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications, 28(1), 629–638.

    Article  Google Scholar 

  7. Mathew, X., Enriquez, J. P., Romeo, A., & Tiwari, A. N. (2004). CdTe/CdS solar cells on flexible substrates. Solar Energy, 77(6), 831–838.

    Article  Google Scholar 

  8. Kranz, L., Gretener, C., Perrenoud, J., Schmitt, R., Pianezzi, F., Mattina, F. La, Blösch, P., Cheah, E., Chirila ˘, A., Fella, C.M., Hagendorfer, H., Jäger, T., Nishiwaki, S., Uhl, A.R., Buecheler, S., & Tiwari, A.N. (2013). ARTICLE Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.

    Google Scholar 

  9. Myers, T. H., Edwards, S. W., & Schetzina, J. F. (1981). Optical properties of polycrystalline CdTe films. Journal of Applied Physics, 52(6), 4231–4237.

    Article  Google Scholar 

  10. El-Mongy, A., Belal, A., Shaikh, H. E., & Amin, A. E. (1997). A comparison of the physical properties of CdTe single crystal and thin film. Journal of Physics D: Applied Physics, 30(2), 161–165.

    Article  Google Scholar 

  11. Sathyamoorthy, R. (2003). Effect of substrate temperature on the structure and optical properties of CdTe thin film. Solar Energy Materials, 76, 339–346.

    Article  Google Scholar 

  12. Lalitha, S., Sathyamoorthy, R., Senthilarasu, S., & Subbarayan, A. (2006). Influence of CdCl2 treatment on structural and optical properties of vacuum evaporated CdTe thin films. Solar Energy Materials Solar Cells, 90(6 SPEC. ISS.), 694–703.

    Google Scholar 

  13. Artegiani, E., Menossi, D., Salavei, A., di Mare, S., & Romeo, A. (2017). Analysis of the influence on the performance degradation of CdTe solar cells by the front contact. Thin Solid Films, 633, 101–105.

    Article  Google Scholar 

  14. Alamri, S. N., & Brinkman, A. W. (2000). The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells. Journal of Physics D. Applied Physics, 33(1), L1–L4.

    Article  Google Scholar 

  15. Romeo, N., Bosio, A., Canevari, V., Terheggen, M., & Vaillant Roca, L. (2003). Comparison of different conducting oxides as substrates for CdS/CdTe thin film solar cells. Thin Solid Films, 431–432(03), 364–368.

    Article  Google Scholar 

  16. Gupta, A., & Compaan, A. D. (2004). All-sputtered 14% CdS∕CdTeCdS∕CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Applied Physics Letters, 85(4), 684–686.

    Article  Google Scholar 

  17. Perrenoud, J., Kranz, L., Buecheler, S., Pianezzi, F., & Tiwari, A. N. (2011). The use of aluminium doped ZnO as transparent conductive oxide for CdS/CdTe solar cells. Thin Solid Films, 519(21), 7444–7448.

    Article  Google Scholar 

  18. Purica, M., Budianu, E., Rusu, E., Danila, M., & Gavrila, R. (2002). Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films, 403–404, 485–488.

    Article  Google Scholar 

  19. Ennaoui, A., Weber, M., Scheer, R., & Lewerenz, H. J. (1998). Chemical-bath ZnO buffer layer for CuInS2 thin-film solar cells. Solar Energy Materials and Solar Cells, 54(1), 277–286.

    Article  Google Scholar 

  20. Maruyama, T., & Tabata, K. (1990). Fluorine-doped tin dioxide thin films prepared by chemical vapor deposition. Journal of Applied Physics, 68(8), 4282–4285.

    Article  Google Scholar 

  21. Kartopu, G., Clayton, A. J., Brooks, W. S. M., Hodgson, S. D., Barrioz, V., Maertens, A., Lamb, D. A., & Irvine, S. J. C. (2014). Effect of window layer composition in Cd1_xZnxS/CdTe solar cells. Progress in Photovoltaics: Research and Applications, 22, 18–23.

    Article  Google Scholar 

  22. Wu, X., Keane, J.C., Dhere, R.G., DeHart, C., Duda, A., Gessert, T.A., Asher, S., Levi, D.H., & Sheldon, P. (2001) 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell. Proc. 17th Eur. Photovolt. SolarEnergy Conf., 995–1000.

    Google Scholar 

  23. Ferekides, C. C. S., Marinskiy, D., Viswanathan, V., Tetali, B., Palekis, V., Selvaraj, P., Morel, D. L., Telali, B., Palekis, V., Selvaraj, P., & Morel, D. L. (2000). High efficiency CSS CdTe solar cells. Thin Solid Films, 361–362(1–2), 520–526.

    Article  Google Scholar 

  24. Romeo, N., Bosio, A., & Romeo, A. (2010). An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Solar Energy Materials and Solar Cells, 94(1), 2–7.

    Article  Google Scholar 

  25. Romeo, N., Bosio, A., & Romeo, A. (2010). An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Solar Energy Materials and Solar Cells, 94, 2–7.

    Article  Google Scholar 

  26. Romeo, A., Baetzner, D. L., Zogg, H., Tiwari, A. N., & C. VIGNALI. (2001). Influence of CdS growth process on the structural and photovoltaic properties of CdTe/ CdS solar cells. Solar Energy Materials and Solar Cells, 67(2), 311–321.

    Article  Google Scholar 

  27. Romeo, A., Baetzner, D.L., Zogg, H., & Tiwari, A. N.. (2000) Recrystallization in CdTe/CdS. Thin Solid Films, 361362, 420–425.

    Google Scholar 

  28. Skarp, J., Koskinen, Y., Lindfors, S., Rautiainen, A., and Suntola, T. (1991) Development and Evaluation of Cds/CdTe Thin Film PV Cells, in Tenth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, held at Lisbon, Portugal, 8--12 April 1991, in A. Luque, G. Sala, W. Palz, G. Dos Santos, & P. Helm (Eds.), Springer Netherlands, pp. 567–569.

    Google Scholar 

  29. Skarp, J., Anttila, E., Rautiainen, A., & T., S. (1992). ALE-CdS/CdTe-PV-CELLS. Int. J. Sol. Energy, 12, 137–142.

    Article  Google Scholar 

  30. Das, S. K., & Morris, G. C. (1992). Influence of growth and microstructure of electrodeposited cadmium telluride films on the properties of n-CdS/p-CdTe thin-film solar cells. Journal of Applied Physics, 72(10), 4940–4945.

    Article  Google Scholar 

  31. Morris, G. C., & Das, S. (1992). Some fabrication procedures for electrodeposited CdTe solar cells. International Journal of Solar Energy, 12, 95–108.

    Article  Google Scholar 

  32. Ikegami, S. (1988). CdS/CdTe solar cells by the screen-printing-sintering technique: Fabrication, photovoltaic properties and applications. Sol. Cells, 23(1), 89–105.

    Article  Google Scholar 

  33. Matsumoto, H., Kuribayashi, K., Uda, H., Komatsu, Y., Nakano, A., & Ikegami, S. (1984) Screen-printed CdS/CdTe solar cell of 12.8% efficiency for an active area of 0.78 cm2. Solar Cells, 11(4), 367–373.

    Google Scholar 

  34. Zoppi, G., Durose, K., Irvine, S. J. C., & Barrioz, V. (2006). Grain and crystal texture properties of absorber layers in MOCVD-grown CdTe/CdS solar cells. Semiconductor Science and Technology, 21(6), 763–770.

    Article  Google Scholar 

  35. Bonnet, D. (1992). THE CdTe Thin Film Solar Cell - An Overview. Int. J. Sol. Energy, 12(1–4), 1–14.

    Article  Google Scholar 

  36. Britt, J., & Ferekides, C. (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters 62 (22), 2851–2852.

    Google Scholar 

  37. Swanson, D. E., Kephart, J. M., Kobyakov, P. S., Walters, K., Cameron, K. C., Barth, K. L., Sampath, W. S., Drayton, J., & Sites, J. R. (2016). Single vacuum chamber with multiple close space sublimation sources to fabricate CdTe solar cells. Journal of Vacuum Science and Technology A, 34(2), 21202.

    Article  Google Scholar 

  38. Lisco, F. (2015) High rate deposition processes for thin film CdTe solar cells.

    Google Scholar 

  39. Kephart, J.M., Geisthardt, R.M., & Sampath, W.S. Optimization of CdTe thin-film solar cell efficiency using a sputtered, oxygenated CdS window layer. Progress in Photovoltaics: Research and Applications, 23(11), 1484–1492.

    Google Scholar 

  40. Rimmaudo, I., Salavei, A., Artegiani, E., Menossi, D., Giarola, M., Mariotto, G., Gasparotto, A., and Romeo, A. (2017) Improved stability of CdTe solar cells by absorber surface etching. Sol. Energy Mater. Sol. Cells, 162.

    Google Scholar 

  41. Gretener, C., Perrenoud, J., Kranz, L., Kneer, L., Schmitt, R., Buecheler, S., & Tiwari, A. N. (2013). CdTe/CdS thin film solar cells grown in substrate configuration. Progress in Photovoltaics: Research and Applications, 21(8), 1580–1586.

    Article  Google Scholar 

  42. Cunningham, D.W., & Skinner, D.E. (2002) Apollo ® Thin Film Process Development Apollo ® Thin Film Process Development Phase 2 Technical Report. (NREL Report NREL/SR-520–32883).

    Google Scholar 

  43. Woodcock, J.M., Turner, A.K., Oszsan, M.E., & Summers, J.G. (1991). Thin film solar cells based on electrodeposited CdTe. Proceedings 22nd IEEE Photovoltaic Special Conference, p. 842.

    Google Scholar 

  44. Nakayama, N., Matsumoto, H., Nakano, A., Ikegami, S., Uda, H., & Yamashita, T. (1980). Screen Printed Thin Film CdS}/{CdTe Solar Cell. Japanese Journal of Applied Physics, 19(4), 703–712.

    Article  Google Scholar 

  45. Kartopu, G., Phillips, L. J., Barrioz, V., Irvine, S. J. C., Hodgson, S. D., Tejedor, E., Dupin, D., Clayton, A. J., Rugen-Hankey, S. L., & Durose, K. (2016). Progression of metalorganic chemical vapour-deposited CdTe thin-film PV devices towards modules. Progress in Photovoltaics: Research and Applications, 24(3), 283–291.

    Article  Google Scholar 

  46. Shao, M., Fischer, A., Grecu, D., Jayamaha, U. N., Bykov, E., Contreras-Puente, G., Bohn, R. G., & Compaan, A. D. (1996). Radio-frequency-magnetron-sputtered CdS/CdTe solar cells on soda-lime glass. Applied Physics Letters, 69(20), 3045–3047.

    Article  Google Scholar 

  47. Bonnet, D., Henrichs, B., & Richter, H. (1991) High rate deposition of high quality CdTe films for high efficiency solar cell. Twenty Second IEEE Photovoltaic Special Conference, pp. 1165–1168.

    Google Scholar 

  48. Powell, R.C., Dorer, G.L., Jayamaha, U., & Hanak, J.J. (1998) Technology support for initiation of high-throughput processing of thin film CdTe PV.

    Google Scholar 

  49. Ferekides, C.S., Viswanathan, V., & Morel, D.L. (1997) RF sputtered back contacts for CdTe/CdS thin film solar cells. Proc. 26th IEEE Photovoltaic Special Conference, pp. 423–426

    Google Scholar 

  50. Wu, X., Zhou, J., Duda, A., Yan, Y., Teeter, G., Asher, S., Metzger, W.K., Demtsu, S., Wei, S.H., and Noufi, R. (2007) Phase control of CuxTe film and its effects on CdS/CdTe solar cell. Thin Solid Films, 515 (15 SPEC. ISS.), 5798–5803.

    Google Scholar 

  51. Nawarange, A.W., and Compaan, A.D. (2011) Optimization of Back Contacts for CdTe Solar Cells using sputtered CuxTe. Proc. 37th IEEE Photovolt. Spec. Conf., 1317–1321.

    Google Scholar 

  52. Suyama, N., Arita, T., Nishiyama, Y., Ueno, N., Kitamura, S., and Murozono, M. (1990) CdS/CdTe solar cells by the screen-printing sintering technique. Proceedings 21th IEEE Photovoltaic Special Conference, pp. 498–503.

    Google Scholar 

  53. Gessert, T.A., Mason, A.R., Sheldon, P., Swartzlander, A.B., Niles, D., & Coutts, T.J. (1996) Development of Cu‐doped ZnTe as a back‐contact interface layer for thin‐film CdS/CdTe solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, Film 14(3), 806–812.

    Google Scholar 

  54. Mondal, A., McCandless, B. E., & Birkmire, R. W. (1992). Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells. Solar Energy Materials and Solar Cells, 26(3), 181–187.

    Article  Google Scholar 

  55. Li, J. V., Duenow, J. N., Kuciauskas, D., Kanevce, A., Dhere, R. G., Young, M. R., & Levi, D. H. (2013). Electrical characterization of cu composition effects in CdS/CdTe thin-film solar cells with a ZnTe: Cu back contact. IEEE J. Photovoltaics, 3(3), 1095–1099.

    Article  Google Scholar 

  56. Romeo, A., Salavei, A., Rimmaudo, I., Bosio, A., Menossi, D., Piccinelli, F., & Romeo, N. Electrical Characterization and Aging of CdTe Thin Film Solar Cells with Bi 2 Te 3 Back Contact. (Cv).

    Google Scholar 

  57. Amin, N., Sopian, K., & Konagai, M. (2007). Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Solar Energy Materials and Solar Cells, 91(13), 1202–1208.

    Article  Google Scholar 

  58. Sites, J., & Pan, J. (2007) Strategies to increase CdTe solar-cell voltage. Thin Solid Films.

    Google Scholar 

  59. Tang, J., Mao, D., Ohno, T., and Kaydanov, V. (1997) Properties of ZnTe: Cu thin films and CdS/CdTe/ZnTe solar cells. Conference, pp. 439–442.

    Google Scholar 

  60. Niemegeers, A., & Burgelman, M. (1997). Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. Journal of Applied Physics, 81(6), 2881.

    Article  Google Scholar 

  61. Abken, A. E., & Bartelt, O. J. (2002). Sputtered Mo/Sb2Te3 and Ni/Sb2Te3 layers as back contacts for CdTe/CdS solar cells. Thin Solid Films, 403–404, 216–222.

    Article  Google Scholar 

  62. Bätzner, D. L., Romeo, A., Zogg, H., Wendt, R., & Tiwari, A. N. (2001). Development of efficient and stable back contacts on CdTe/CdS solar cells. Thin Solid Films, 387(1–2), 151–154.

    Article  Google Scholar 

  63. Romeo, N., Bosio, A., Tedeschi, R., Romeo, A., & Canevari, V. (1999). A highly efficient and stable CdTe/CdS thin film solar cell. Solar Energy Materials and Solar Cells, 58(2), 209–218.

    Article  Google Scholar 

  64. Artegiani, E., Menossi, D., Shiel, H., Dhanak, V., Major, J.D., Gasparotto, A., Sun, K., & Romeo, A. (2019) Analysis of a novel CuCl 2 back contact process for improved stability in CdTe solar cells. Progress in Photovoltaics: Research and Applications., pip. 3148.

    Google Scholar 

  65. Jin, L., Linyu, Y., Jikang, J., Hua, Z., & Yanfei, S. (2009). Effects of Sn-doping on morphology and optical properties of CdTe polycrystalline films. Journal of Semiconductors, 30(11), 112003.

    Article  Google Scholar 

  66. Al-Douri, A.A.J., Al-Shakily, F.Y., Alias, M.F.A., & Alnajjar, A.A. (2010) Optical properties of Al- and Sb-doped CdTe thin films. Advances in Condensed Matter Physics, 2010.

    Google Scholar 

  67. Ã, T.O., Ikeda, S., Nagatsuka, S., Hayashi, R., & Yoshino, K. (2012). Effects of Antimony Doping in Polycrystalline CdTe Thin-Film Solar Cells Effects of Antimony Doping in Polycrystalline CdTe Thin-Film Solar Cells. Japanese Journal of Applied Physics, 51, 10NC12–1–10NC12–4.

    Google Scholar 

  68. Kartopu, G., Barrioz, V., Monir, S., Lamb, D. A., & Irvine, S. J. C. (2015). CdTe thin film solar cells produced using a chamberless inline process via metalorganic chemical vapour deposition. Thin Solid Films, 578, 93–97.

    Article  Google Scholar 

  69. Danielson, A., Munshi, A., Kindvall, A., Swain, S.K., Barth, K., Lynn, K., & Sampath, W. (2018). Doping CdTe Absorber Cells using Group V Elements. 2018 IEEE 7th World Conf. Photovolt. Energy Convers. (A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), pp. 119–123.

    Google Scholar 

  70. Khan, I.S. (2018). In Situ Extrinsic Doping of CdTe Thin Films for Photovoltaic Applications. (March)

    Google Scholar 

  71. Gretener, C., Wyss, M., Perrenoud, J., Kranz, L., Buecheler, S., & Tiwari, A. N. (2014). CdTe thin films doped by Cu and Ag—A comparison in substrate configuration solar cells. 2014 IEEE 40th Photovoltaic Specialist Conference PVSC, 2014, 3510–3514.

    Article  Google Scholar 

  72. Duenow, J. N., Colegrove, E., Wei, S.-H., Young, M. R., Metzger, W. K., Albin, D. S., Yang, J.-H., Burst, J. M., & Harvey, S. P. (2018). Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe. Journal of Physics D Applied Physics, 51(7), 075102.

    Article  Google Scholar 

  73. Danielson, A., Munshi, A., Swanson, D., Drayton, J., Kartopu, G., Barth, K., Irvine, S., and Sampath, W. (2018) MOCVD Deposition of Group V Doped CdTe in Sublimated CdTe and CdSeTe Devices. 2018 IEEE 7th World Conf. Photovolt. Energy Convers. (A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), 153–156.

    Google Scholar 

  74. Romeo, N., Bosio, A., Romeo, A., Mazzamuto, S., & Canevari, V. (2006). High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas in Substitution of CdCl2. In Proc. 21st Eur. Photovoltaics Solar Energy Conference, p. 1857

    Google Scholar 

  75. Salavei, A., Rimmaudo, I., Piccinelli, F., Zabierowski, P., & Romeo, A. (2013). Study of difluorochloromethane activation treatment on low substrate temperature deposited CdTe solar cells. Solar Energy Materials and Solar Cells, 112, 190–195.

    Article  Google Scholar 

  76. Major, J.D., Treharne, R.E., Phillips, L.J., & Durose, K. (2014). A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature , 511.

    Google Scholar 

  77. Menossi, D., Artegiani, E., Salavei, A., Mare, S. Di, and Romeo, A. (2016) Study of MgCl 2 activation treatment on the defects of CdTe solar cells by capacitance-voltage, drive level capacitance profiling and admittance spectroscopy techniques.

    Google Scholar 

  78. Consonni, V., Feuillet, G., & Renet, S. (2006). Spectroscopic analysis of defects in chlorine doped polycrystalline CdTe. Journal of Applied Physics, 99, 53502–53507.

    Article  Google Scholar 

  79. Stadler, W., Hofmann, D.M., Meyer, B.K., Krause-Rehberg, B., Polity, A., Abgarjan, T., Salk, M., Benz, K.W., & Azoulay, M. (1995). Compensation Models in Chlorine dopoed CdTe based on positron annhilation and photoluminescence spectroscopy. 88(5), 921–924.

    Google Scholar 

  80. Tyan, Y.-S., Vazan, F., & Barge, T.S. (1984). Effect of oxygen on thin-film CdS/CdTe solar cells. Conference Rec. 17th IEEE Photovoltaic Solar Energy Conference, pp. 840–845.

    Google Scholar 

  81. Rose, D. H., Albin, D. S., Matson, R. J., Swartzlander, A. B., Li, X. S., Dhere, R. G., Asher, S., Hasoon, F. S., & Sheldon, P. (1996). Effects of oxygen during close-spaced sublimation of CdTe solar cells. Proceedings of 25th IEEE Photovoltaic Solar Energy Conference, 426, 337–348.

    Google Scholar 

  82. Rohatgi, A., Sudharsanan, R., Ringe, S. A., & MacDougal, M. H. (1991). Growth and process optimization of CdTe and CdZnTe polycrystalline films for high-efficiency solar cells. Solar Cells, 30, 109–122.

    Article  Google Scholar 

  83. Jahn, U., Okamoto, T., Yamada, A., & Konagai, M. (2001). Doping and intermixing in CdS/CdTe solar cells fabricated under different conditions. Journal of Applied Physics, 90, 2553–2558.

    Article  Google Scholar 

  84. Galloway, S. A., & Durose, K. (1995). SEM/EBIC observations of CdTe/CdS thin film solar cells. Microsc Semicond Mater, 146, 709–712.

    Google Scholar 

  85. Menossi, D., Artegiani, E., Salavei, A., Di Mare, S., & Romeo, A. Study of MgCl2 activation treatment on the defects of CdTe solar cells by capacitance-voltage, drive level capacitance profiling and admittance spectroscopy techniques. Thin Solid Films.

    Google Scholar 

  86. Romeo, A., Buecheler, S., Giarola, M., Mariotto, G., Tiwari, A. N., Romeo, N., Bosio, A., & Mazzamuto, S. (2009). Study of CSS- and HVE-CdTe by different recrystallization processes. Thin Solid Films, 517, 2132–2135.

    Article  Google Scholar 

  87. Ohata, K., Saraie, J., & Tanaka, T. (1973). Optical energy gap of the mixed crystal CdSx Te1-x. Japanese Journal of Applied Physics, 12, 1198–1204.

    Article  Google Scholar 

  88. Lane, D. W., Conibeer, G. J., Wood, D. A., Rogers, K. D., Capper, P., Romani, S., & Hearne, S. (1999). Sulphur diffusion in CdTe and the phase diagram of the CdS–CdTe pseudo-binary alloy. Journal of Crystal Growth, 197, 743–748.

    Article  Google Scholar 

  89. Romeo, A., Bätzner, D. L., Zogg, H., Vignali, C., & Tiwari, A. N. (2001). Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells. Solar Energy Materials and Solar Cells, 67(1–4), 311–321.

    Article  Google Scholar 

  90. Durose, K., Cousins, M. A., Boyle, D. S., Beier, J., & Bonnet, D. (2002). Grain boundaries and impurities in CdTe/CdS solar cells. Thin Solid Films, 403–404, 396–404.

    Article  Google Scholar 

  91. Edwards, P. R., Galloway, S. A., & Durose, K. (2000). (2000) EBIC and luminescence mapping of CdTe/CdS solar cells (vol 361, pg 364. Thin Solid Films, 372(1–2), 284–291.

    Article  Google Scholar 

  92. Galloway, S. A., Edwards, P. R., & Durose, K. (1999). Characterisation of thin film CdS/CdTe solar cells using electron and optical beam induced current. Solar Energy Materials and Solar Cells, 57(1), 61–74.

    Article  Google Scholar 

  93. Nowell, M.M., Wright, S.I., Scarpulla, M.A., Compaan, A.D., Liuc, X., Paudel, N.R., and Wieland, K.A. (2012) The correlation of performance in CdTe photovoltaics with grain boundaries. In 2012 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 1–7.

    Google Scholar 

  94. Abou-Ras, D., Kavalakkatt, J., Nichterwitz, M., Schäfer, N., Harndt, S., Wilkinson, A. J., Tsyrulin, K., Schulz, H., & Bauer, F. (2013). Electron backscatter diffraction: An important tool for analyses of structure-property relationships in thin-film solar cells. JOM Journal of the Minerals Metals and Materials Society, 65(9), 1222–1228.

    Article  Google Scholar 

  95. Chou, H. C., Rohatgi, A., Jokerst, N. M., Thomas, E. W., & Kamra, S. (1996). Copper migration in CdTe heterojunction solar cells. Journal of Electronic Materials, 25(7), 1093–1098.

    Article  Google Scholar 

  96. Asher, S.E., Reedy, R.C., Dhere, R., Gessert, T.A., Young, M.R., & Renewable, N. (2000) Determination of Cu Concentrations in CdTe/CdS Devices by High Mass Resolution Secondary Ion Mass Spectrometry. NCPV Progr. Rev. Meet., 275–276.

    Google Scholar 

  97. Romeo, A., Salavei, A., Rimmaudo, I., Bosio, A., Menossi, D., Piccinelli, F., and Romeo, N. (2013) Electrical characterization and aging of CdTe thin film solar cells with Bi2Te3 back contact. Photovolt. Spec. Conf. (PVSC), 2013 IEEE 39th, 1178–1182.

    Google Scholar 

  98. Li, J., Chen, J., Sestak, M.N., Thornberry, C., & Collins, R.W. (2009) Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures. Conference Rec. 34th IEEE Photovoltaic Specialists Conference, 001982–001987.

    Google Scholar 

  99. Bridge, C. J., Dawson, P., Buckle, P. D., & Özsan, M. E. (2000). Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells. Journal of Applied Physics, 88(11), 6451–6456.

    Article  Google Scholar 

  100. Okamoto, T., Yamada, A., & Konagai, M. (2000). Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation. Journal of Crystal Growth, 214(215), 1148–1151.

    Article  Google Scholar 

  101. Halliday, D.P., Potter, M.D.G., Boyle, D.S., Durose, K. (2001). Photoluminescence characterisation of ion implanted CdTe. II-VI Compd. Semicond. Photovoltaic Materials Symposium (Materials Res. Soc. Symp. Proc. Vol.668), 668 (January 2001), H1.8.1–6.

    Google Scholar 

  102. Romero, M. J., Albin, D. S., Al-Jassim, M. M., Wu, X., Moutinho, H. R., & Dhere, R. G. (2002). Cathodoluminescence of Cu diffusion in CdTe thin films for CdTe/CdS solar cells. Applied Physics Letters, 81(16), 2962–2964.

    Article  Google Scholar 

  103. Heath, J., and Zabierowski, P. (2011) Capacitance spectroscopy of thin film solar cells, in Advanced Characterization Techniques for Thin-Film Solar Cells.

    Google Scholar 

  104. Rau, U., Jasenek, A., Schock, H.W., Engelhardt, F., & Meyer, T. (1999) Electronic loss mechanisms in chalcopyrite heterojunction solar cells. Proc. E-{MRS} Spring Meet. Strasbourg, Fr., 362, 298–302.

    Google Scholar 

  105. Seymour, F.H., Kaydanov, V., & Ohno, T.R. Simulated admittance spectroscopy measurements of high concentration deep level defects in CdTe thin-film solar cells.

    Google Scholar 

  106. Heath, J. T., Cohen, J. D., & Shafarman, W. N. (2004). Bulk and metastable defects in CuIn1-xGaxSe2 thin films using drive-level capacitance profiling. Journal of Applied Physics, 95(3), 1000–1010.

    Article  Google Scholar 

  107. Kosyachenko, L., and Toyama, T. (2014) Current-voltage characteristics and quantum efficiency spectra of efficient thin-film CdS/CdTe solar cells. Solar Energy Materials of Solar Cells, 120(PART B), 512–520.

    Google Scholar 

  108. Bätzner, D.L., Agostinelli, G., Romeo, A., Zogg, H., & Tiwari, A.N. (2001) Voltage Dependent Carrier Collection in CdTe Solar Cells. MRS Proc, 668.

    Google Scholar 

  109. Baetzner, D. L., Agostinelli, G., Campo, M., Romeo, A., Beier, J., Zogg, H., & Tiwari, A. N. (2003). Study of spatially resolved impurity diffusion in CdTe solar cells using voltage dependent quantum efficiency. Thin Solid Films, 431, 421–425.

    Article  Google Scholar 

  110. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2016). Solar cell efficiency tables (version 48). Program Photovoltaic Research Applications, 24, 905–913.

    Article  Google Scholar 

  111. Paudel, N. R., & Yan, Y. (2014). Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Applied Physics Letters, 105(18), 1–6.

    Article  Google Scholar 

  112. Wei, S.-H., Zhang, S. B., & Zunger, A. (2000). First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. Journal of Applied Physics, 87, 1304.

    Article  Google Scholar 

  113. Yang, X., Liu, B., Li, B., Zhang, J., Li, W., Wu, L., & Feng, L. (2016). Preparation and characterization of pulsed laser deposited a novel CdS/CdSe composite window layer for CdTe thin film solar cell. Applied Surface Science, 367, 480–484.

    Article  Google Scholar 

  114. Poplawsky, J. D., Guo, W., Paudel, N., Ng, A., More, K., Leonard, D., & Yan, Y. (2016). Structural and compositional dependence of the CdTe x Se 1–x alloy layer photoactivity in CdTe-based solar cells. Nature Communications, 7, 1–9.

    Google Scholar 

  115. Baines, T., Zoppi, G., Bowen, L., Shalvey, T. P., Mariotti, S., Durose, K., & Major, J. D. (2018). Incorporation of CdSe layers into CdTe thin film solar cells. Solar Energy Materials and Solar Cells, 180(March), 196–204.

    Article  Google Scholar 

  116. Swanson, D. E., Sites, J. R., & Sampath, W. S. (2017). Co-sublimation of CdSexTe1−xlayers for CdTe solar cells. Solar Energy Materials and Solar Cells, 159, 389–394.

    Article  Google Scholar 

  117. Munshi, A.H., Kephart, J., Abbas, A., Raguse, J., Beaudry, J.N., Barth, K., Sites, J., Walls, J., and Sampath, W. (2018) Polycrystalline CdSeTe/CdTe absorber cells with 28 mA/cm2 short-circuit current. IEEE Journal of Photovoltaics.

    Google Scholar 

  118. Artegiani, E., Gasparotto, A., Punathil, P., Kumar, V., Barbato, M., Meneghini, M., Meneghesso, G., Piccinelli, F., & Romeo, A. (2021). A new method for CdSexTe1-x band grading for high efficiency thin-absorber CdTe solar cells. Solar Energy Materials and Solar Cells, 226, 111081.

    Article  Google Scholar 

  119. Zheng, X., Kuciauskas, D., Moseley, J., Colegrove, E., Albin, D.S., Moutinho, H., Duenow, J.N., Ablekim, T., Harvey, S.P., Ferguson, A., & Metzger, W.K. (2019) Recombination and bandgap engineering in CdSeTe/CdTe solar cells. APL Materials 7(7).

    Google Scholar 

  120. Artegiani, E., Punathil, P., Kumar, V., Bertoncello, M., Meneghini, M., Gasparotto, A., & Romeo, A. (2021). Effects of CdTe selenization on the electrical properties of the absorber for the fabrication of CdSexTe1-x/CdTe based solar cells. Solar Energy, 227, 8–12.

    Article  Google Scholar 

  121. Rao, G. V., Säuberlich, F., & Klein, A. (2005). Influence of Mg content on the band alignment at CdS/(Zn, Mg)O interfaces. Applied Physics Letters, 87(3), 1–4.

    Article  Google Scholar 

  122. Klein, A. (2015). Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. Journal of Physics: Condensed Matter, 27(13), 134201.

    Google Scholar 

  123. Bittau, F., Artegiani, E., Abbas, A., Menossi, D., Romeo, A., Bowers, J.W., & Walls, J.M. Magnesium-doped zinc oxide as a high resistance transparent layer for thin film CdS/CdTe solar cells.

    Google Scholar 

  124. Artegiani, E., Leoncini, M., Barbato, M., Meneghini, M., Meneghesso, G., Cavallini, M., & Romeo, A. (2019). Analysis of magnesium zinc oxide layers for high efficiency CdTe devices. Thin Solid Films.

    Google Scholar 

  125. Munshi, A. H., Kephart, J. M., Abbas, A., Shimpi, T. M., Barth, K. L., Walls, J. M., & Sampath, W. S. (2018). Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection. Solar Energy Materials and Solar Cells, 176, 9–18.

    Article  Google Scholar 

  126. Swanson, D., Abbas, A., Munshi, A., Drayton, J., Raguse, J., Geisthardt, R., R. Sites, J., & Sampath, W. (2015). Incorporation of Cd1-xMgx Te as an Electron Reflector for Cadmium Telluride Photovoltaic Cells. MRS Proc, 1771.

    Google Scholar 

  127. Morales-Acevedo, A. (2009). Variable band-gap semiconductors as the basis of new solar cells. Solar Energy, 83(9), 1466–1471.

    Article  Google Scholar 

  128. Morales-Acevedo, A. (2011). Analytical model for the photocurrent of solar cells based on graded band-gap CdZnTe thin films. Solar Energy Materials and Solar Cells, 95(10), 2837–2841.

    Article  Google Scholar 

  129. Sites, J., Munshi, A., Kephart, J., Swanson, D., & Sampath, W.S. (2016). Progress and Challenges with CdTe Cell Efficiency. In 2016 IEEE 43rd Photovoltaic Specialists Conference.

    Google Scholar 

  130. Romeo, N., Bosio, A., & Canevari, V. (1992). A new method to prepare efficient CdTe/CdS thin film backwall solar cells. In Proceedings 11th EC photovoltaic solar energy conference, pp. 972–974.

    Google Scholar 

  131. Dhere, R.G., Duenow, N.J., DeHart, C.M., Li, J.V., Kuciauskas, D., Young, M.R., Alberi, K., Mascarenhas, A., & Gessert, T.A. (2011). Analysis of the Junction Properties of CdS/CdTe Devices in Substrate and Superstrate Configurations. In Proceedings 26th European photovoltaic solar energy conference and exhibition, pp. 2456–2459.

    Google Scholar 

  132. Kranz, L., Gretener, C., Perrenoud, J., Schmitt, R., Pianezzi, F., La Mattina, F., Blösch, P., Cheah, E., Chirilǎ, A., Fella, C.M., Hagendorfer, H., Jäger, T., Nishiwaki, S., Uhl, A.R., Buecheler, S., & Tiwari, A.N. (2013). Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nature Communication, 4.

    Google Scholar 

  133. Makrides, G., Zinsser, B., Georghiou, G.E., Schubert, M., & Werner, J.H. (2008) Outdoor efficiency of different photovoltaic systems installed in Cyprus and Germany. Conf. Rec. IEEE Photovolt. Spec. Conf., 7–12.

    Google Scholar 

  134. Virtuani, A., Pavanello, D., & Friesen, G. (2010) Overview of Temperature Coefficients of Different Thin Film Photovoltaic Technologies. In: 25th European photovoltaic solar energy conference and exhibition/5th World conference on photovoltaic energy conversion, (pp. 4248–4252), 6–10 Sept. 2010, Val. Spain, (January).

    Google Scholar 

  135. Tiwari, A. N., Romeo, A., Baetzner, D. L., & Zogg, H. (2001). Flexible CdTe solar cells on polymer films. Program Photovoltaics, 9, 211–215.

    Article  Google Scholar 

  136. Perrenoud, J., Schaffner, B., Buecheler, S., & Tiwari, A. N. (2011). Fabrication of flexible CdTe solar modules with monolithic cell interconnection. Solar Energy Materials and Solar Cells, 95(SUPPL. 1), S8–S12.

    Article  Google Scholar 

  137. Mahabaduge, H. P., Rance, W. L., Burst, J. M., Reese, M. O., Meysing, D. M., Wolden, C. A., Li, J., Beach, J. D., Gessert, T. A., Metzger, W. K., Garner, S., & Barnes, T. M. (2015). High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates. Applied Physics Letters, 106(13), 133501.

    Article  Google Scholar 

  138. Salavei, A., Menossi, D., Piccinelli, F., Kumar, A., Mariotto, G., Barbato, M., Meneghini, M., Meneghesso, G., Di Mare, S., Artegiani, E., & Romeo, A. (2016). Comparison of high efficiency flexible CdTe solar cells on different substrates at low temperature deposition. Solar Energy.

    Google Scholar 

  139. Zweibel, K. (2004) PV FAQs: Will We Have Enough Materials for Energy-Significant PV?

    Google Scholar 

  140. Fthenakis, V. (2009) Sustainability of photovoltaics: The case for thin-film solar cells. Renewable and Sustainable Energy Reviews, 13(9).

    Google Scholar 

  141. Paudel, N. R., Wieland, K. A., & Compaan, A. D. (2012). Ultrathin CdS/CdTe solar cells by sputtering. Solar Energy Materials and Solar Cells, 105, 109–112.

    Article  Google Scholar 

  142. Paudel, N. R., Compaan, A. D., & Yan, Y. (2014). Ultrathin CdTe solar cells with MoO3-x /Au back contacts. Journal of Electronic Materials, 43(8), 2783–2787.

    Article  Google Scholar 

  143. Salavei, A., Rimmaudo, I., Xu, B.L., Barbato, M., Meneghini, M., Meneghesso, G., Di Mare, S., & Romeo, A. (2014). High Efficiency Ultra-Thin CdTe Absorbers by Physical Vapor Deposition. 29th Eur. Photovoltaic Solar Energy Conf. Exhibit, pp. 1430–1432.

    Google Scholar 

  144. Krishnakumar, V., Barati, A., Schimper, H. J., Klein, A., & Jaegermann, W. (2013). A possible way to reduce absorber layer thickness in thin film CdTe solar cells. Thin Solid Films, 535(1), 233–236.

    Article  Google Scholar 

  145. Rimmaudo, I., Salavei, A., Xu, B. L., Di Mare, S., & Romeo, A. (2015). Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact. Thin Solid Films, 582, 105–109.

    Article  Google Scholar 

  146. Fthenakis, V.M., Alsema, E. a., & de Wild-Scholten, M.J. (2005). Life cycle assessment of photovoltaics: perceptions, needs, and challenges. In: Conference Record Thirty-first IEEE Photovoltaic Specialists Conference, pp. 1655–1658

    Google Scholar 

  147. Alsema, E.A. (2004). Environmental life cycle assessment of advanced silicon solar cell technoloGIES. (June), pp. 2–5.

    Google Scholar 

  148. Fthenakis, V., & Alsema, E. (2006). Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004–early 2005 Status. 275–280.

    Google Scholar 

  149. Fthenakis, V. M., Kim, H. C., & Alsema, E. (2008). Emissions from photovoltaic life cycles emissions from photovoltaic life cycles. Environmental Science and Technology, 42(6), 2168–2174.

    Article  Google Scholar 

  150. Kaczmar, S. (2011). Evaluating the read-across approach on CdTe toxicity for CdTe photovoltaics. Society of Environmental Toxicology and Chemistry North America. In: 32nd Annual Meeting.

    Google Scholar 

  151. Steinberger, H. (1998). Health, safety and environmental risks from the operation of CdTe and CIS thin-film modules. Progress in Photovoltaics: Research and Applications, 6(2), 99–103.

    Article  Google Scholar 

  152. Zayed, J., & Philippe, S. (2009). Acute oral and inhalation toxicities in rats with cadmium telluride. International Journal of Toxicology, 28(4), 259–265.

    Article  Google Scholar 

  153. Fthenakis, V. M., Morris, S. C., Moskowitz, P. D., & Morgan, D. L. (1999). Toxicity of cadmium telluride, copper indium diselenide, and copper gallium diselenide. Progress in Photovoltaics: Research and Applications, 7(6), 489–497.

    Article  Google Scholar 

  154. Zeng, C., Ramos-Ruiz, A., Field, J. A., & Sierra-Alvarez, R. (2015). Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. Journal of Environmental Management, 154, 78–85.

    Article  Google Scholar 

  155. Ramos-Ruiz, A., Wilkening, J. V., Field, J. A., & Sierra-Alvarez, R. (2017). Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. Journal of Hazardous Materials, 336, 57–64.

    Article  Google Scholar 

  156. Munshi, A. H., Sasidharan, N., Pinkayan, S., Barth, K. L., Sampath, W. S., & Ongsakul, W. (2018). Thin-film CdTe photovoltaics—the technology for utility scale sustainable energy generation. Solar Energy, 173(August), 511–516.

    Article  Google Scholar 

  157. Eke, R., Betts, T.R., & Gottschalg, R. (2017) Spectral irradiance effects on the outdoor performance of photovoltaic modules. Renewable and Sustainable Energy Reviews, 69,429–434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Romeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romeo, A., Artegiani, E. (2022). CdTe-Based Thin Film Solar Cells: Present Status and Future Developments. In: Singh, U.P., Chaure, N.B. (eds) Recent Advances in Thin Film Photovoltaics. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3724-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3724-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3723-1

  • Online ISBN: 978-981-19-3724-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics