Skip to main content

Recent Advances in the Kesterite-Based Thin Film Solar Cell Technology: Role of Ge

  • Chapter
  • First Online:
Recent Advances in Thin Film Photovoltaics

Abstract

Research on the kesterite (Cu2ZnSn(S,Se)4), CZT(S,Se)-based thin film solar cell has been substantially increasing throughout the past decade, reaching the forefront of the photovoltaic (PV) research community. Major advances have been reported at various levels, from the fundamental understanding of the material properties to improvements in the device performances and its exploration for applications other than photovoltaics. Being free of critical raw materials (CRMs), the kesterite-based PV technology was expected to supersede the chalcopyrite CIGS compound as the reference chalcogenide absorber, yet the conversion efficiency at the laboratory scale has been stalling in recent years with devices not able to breach the 13% efficiency mark. An abnormally large Voc deficit has been pointed out as the main limitation in the kesterite-based thin film solar cells. The origin of this deficit remained for a long time a subject of debate within the community, with various reasons being cited such as native defects existing in the kesterite material itself, as well as a poor morphology and highly defective interfaces (front and back) in the device structure. A broad range of methodologies were developed to address those issues, involving alternative back contact materials, compound alloying, as well as the use of electron transport layers or innovative doping and passivation strategies, but the challenge to reduce the Voc deficit remains unsolved so far. Following a string of landmark theoretical and experimental studies, the community has recently converged toward the idea that the problem associated with the structural disorder arising from the cationic substitution within the kesterite structure was in all likelihood the main limitation of devices voltage, and that the conversion efficiency could only be improved by markedly mitigating the influence of the resulting defects. To overcome this limitation, various theoretical and experimental studies have proposed replacing the unstable cationic species with other more stable candidate elements. The substitution of Cu by Ag, Zn by Cd, and Sn by Si/Ge could possibly suppress the observed cationic disorder and hence reduce the observed Voc deficit. Among the different suggested candidates, Ge has been identified as the most promising option for replacement of Sn in the standard CZT(S,Se). Sn is known to exhibit a change in its oxidation state, thus creating deep defects within the band gap and inducing band tailing effects; its substitution is therefore the most sought-after. Owing to its CRM-free constituents and freedom to tune the optical band gap from ~1.4 eV (Cu2ZnGeSe4) to ~2.2 eV (Cu2ZnGeS4), Ge kesterite is an attractive compound for application in single junction solar cells as well as wide band gap top cell in Si-based tandem solar cell devices. In this chapter, we review the different strategies employed to overcome the bottlenecks of kesterite-based solar cells until now, from the doping/partial substitution of Sn with Ge in (CZT(S,Se)) up to a complete replacement leading to the realization of Sn-free CZGSe thin film solar cells. In addition to this state of the art, a complete assessment of the limitations reported by different studies will be proposed. A specific emphasis will be placed on the description of the Ge-substituted kesterite fundamental properties explored by both theoretical and experimental methods. Finally, approaches to improve the device efficiency for single junction solar cells as well as the feasibility of realizing much anticipated tandem devices with Si will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Todorov, T., Gunawan, O., Chey, S. J., et al. (2011). Progress towards marketable earth-abundant chalcogenide solar cells. Thin Solid Films, 519, 7378–7381. https://doi.org/10.1016/j.tsf.2010.12.225

    Article  Google Scholar 

  2. Todorov, T. K., Reuter, K. B., & Mitzi, D. B. (2010). High-efficiency solar cell with earth-abundant liquid-processed absorber. Advanced Materials, 22, 156–159. https://doi.org/10.1002/adma.200904155

    Article  Google Scholar 

  3. Mitzi, D. B., Gunawan, O., Todorov, T. K., & Barkhouse, A. R. D. (2013). Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science, 371. https://doi.org/10.1098/rsta.2011.0432

  4. Shin, D., Saparov, B., & Mitzi, D. B. (2017). Defect engineering in multinary Earth-abundant chalcogenide photovoltaic materials. Advanced Energy Materials, 7. https://doi.org/10.1002/aenm.201602366

  5. Schorr, S. (2007). Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films, 515, 5985–5991. https://doi.org/10.1016/j.tsf.2006.12.100

    Article  Google Scholar 

  6. Schorr, S. (2011). The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. Solar Energy Materials and Solar Cells, 95, 1482–1488. https://doi.org/10.1016/j.solmat.2011.01.002

    Article  Google Scholar 

  7. Giraldo, S., Jehl, Z., & Placidi, M., et al. (2019). Progress and perspectives of thin film kesterite photovoltaic technology: A critical review. Advance Materials, 31. https://doi.org/10.1002/adma.201806692

  8. He, M., Yan, C., Li, J., et al. (2021). Kesterite solar cells: Insights into current strategies and challenges. Advancement of Science, 8, 1–16. https://doi.org/10.1002/advs.202004313

    Article  Google Scholar 

  9. Crovetto, A., Kim, S., Fischer, M., et al. (2020). Assessing the defect tolerance of kesterite-inspired solar absorbers. Energy & Environmental Science, 13, 3489–3503. https://doi.org/10.1039/d0ee02177f

    Article  Google Scholar 

  10. Tian, Q., & Liu, S. (2020). Defect suppression in multinary chalcogenide photovoltaic materials derived from kesterite: Progress and outlook. Journal of Materials Chemistry A, 8, 24920–24942. https://doi.org/10.1039/d0ta08202c

    Article  Google Scholar 

  11. Gurieva, G., Valle Rios, L. E., & Franz, A., et al. (2018) Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study. Journal of Applied Physics, 123. https://doi.org/10.1063/1.4997402

  12. Siebentritt, S., & Schorr, S. (2012). Kesterites—a challenging material for solar cells. Progress in Photovoltaics: Research and Applications, 20, 512–519. https://doi.org/10.1002/pip

  13. Ford, G. M., Guo, Q., Agrawal, R., & Hillhouse, H. W. (2011). Earth abundant element Cu2Zn(Sn1-xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% Efficient device fabrication. Chemistry of Materials, 23, 2626–2629. https://doi.org/10.1021/cm2002836

    Article  Google Scholar 

  14. Bag, S., Gunawan, O., Gokmen, T., et al. (2012). Hydrazine-processed Ge-substituted CZTSe solar cells. Chemistry of Materials, 24, 4588–4593. https://doi.org/10.1021/cm302881g

    Article  Google Scholar 

  15. Wang, J. J., Hu, J. S., Guo, Y. G., & Wan, L. J. (2012). Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors. NPG Asia Materials, 4, 1–6. https://doi.org/10.1038/am.2012.2

    Article  Google Scholar 

  16. Fan, F. - J. (2014) Composition- and band-gap-tunable synthesis of Wurtzite-derived Cu2ZnSn(S1-xSex)4 nanocrystals: Theoretical and experimental insights. ACS Nano, 1454–1463.

    Google Scholar 

  17. Miskin, C. K., Yang, W. C., Hages, C. J., et al. (2015). 9.0% efficient Cu2ZnSn(S, Se)4 solar cells from selenized nanoparticle inks. Progress in Photovoltaics: Research and Applications, 23, 654–659. https://doi.org/10.1002/pip.2472

    Article  Google Scholar 

  18. Bishop, D. M., McCandless, B. E., Haight, R., et al. (2015). Fabrication and electronic properties of CZTSe single crystals. IEEE Journal of Photovoltaics, 5, 390–394. https://doi.org/10.1109/JPHOTOV.2014.2363552

    Article  Google Scholar 

  19. Nagaoka, A., Yoshino, K., Taniguchi, H., et al. (2012). Growth of Cu2ZnSnSe4 single crystals from Sn solutions. Journal of Crystal Growth, 354, 147–151. https://doi.org/10.1016/j.jcrysgro.2012.05.030

    Article  Google Scholar 

  20. Lloyd, M. A., McCandless, B. E., & Birkmire, R. (2020). Fabrication and characteristics of high-VOC single-crystalline Cu2ZnSnSe4 solar cells. Progress in Photovoltaics: Research and Applications, 28, 863–872. https://doi.org/10.1002/pip.3273

    Article  Google Scholar 

  21. Walsh, A., Chen, S., Wei, S. H., & Gong, X. G. (2012). Kesterite thin-film solar cells: Advances in materials modelling of Cu2ZnSnS4. Advanced Energy Materials, 2, 400–409. https://doi.org/10.1002/aenm.201100630

    Article  Google Scholar 

  22. Chen, S., Walsh, A., Gong, X. G., & Wei, S. H. (2013). Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials, 25, 1522–1539. https://doi.org/10.1002/adma.201203146

    Article  Google Scholar 

  23. Wallace, S. K., Mitzi, D. B., & Walsh, A. (2017). The steady rise of kesterite solar cells. ACS Energy Letters, 2, 776–779. https://doi.org/10.1021/acsenergylett.7b00131

    Article  Google Scholar 

  24. Wang, W., Winkler, M. T., & Gunawan, O., et al. (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 4. https://doi.org/10.1002/aenm.201301465

  25. Siebentritt, S. (2013). Why are kesterite solar cells not 20% efficient? Thin Solid Films, 535, 1–4. https://doi.org/10.1016/j.tsf.2012.12.089

    Article  Google Scholar 

  26. Tai, K. F., Gunawan, O., Kuwahara, M., et al. (2016). Fill factor losses in Cu2ZnSn(SxSe1-x)4 solar cells: insights from physical and electrical characterization of devices and exfoliated films. Advanced Energy Materials, 6, 1–10. https://doi.org/10.1002/aenm.201501609

    Article  Google Scholar 

  27. Gershon, T., Bishop, D., Antunez, P., et al. (2017). Unconventional kesterites: The quest to reduce band tailing in CZTSSe. Current Opinion in Green and Sustainable Chemistry, 4, 29–36. https://doi.org/10.1016/j.cogsc.2017.01.003

    Article  Google Scholar 

  28. Gunawan, O., Gokmen, T., & Mitzi, D. B. (2014). Suns-VOC characteristics of high performance kesterite solar cells. Journal of Applied Physics, 116. https://doi.org/10.1063/1.4893315

  29. Bourdais, S., Choné, C., Delatouche, B., et al. (2016). Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Advanced Energy Materials, 6, 1–21. https://doi.org/10.1002/aenm.201502276

    Article  Google Scholar 

  30. Kim, S., Márquez, J. A., Unold, T., & Walsh, A. (2020). Upper limit to the photovoltaic efficiency of imperfect crystals from first principles. Energy & Environmental Science, 13, 1481–1491. https://doi.org/10.1039/d0ee00291g

    Article  Google Scholar 

  31. Redinger, A., & Siebentritt, S. (2015). Loss mechanisms in kesterite solar cells. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, 363–386. https://doi.org/10.1002/9781118437865.ch16

  32. Kim, S., Park, J. S., & Walsh, A. (2018). Identification of killer defects in kesterite thin-film solar cells. ACS Energy Letters, 3, 496–500. https://doi.org/10.1021/acsenergylett.7b01313

    Article  Google Scholar 

  33. Romanyuk, Y. E., Haass, S. G., & Giraldo, S., et al. (2019) Doping and alloying of kesterites. Journal of Physics Energy, 1. https://doi.org/10.1088/2515-7655/ab23bc

  34. Kim, J., & Shin, B. (2017). Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S, Se)4 thin film solar cells. Electronic Materials Letters, 13, 373–392. https://doi.org/10.1007/s13391-017-7118-1

    Article  Google Scholar 

  35. Kim, J. (2017). Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation Jekyung. Progress in Photovoltaics: Research and Applications, 20, 1114–1129. https://doi.org/10.1002/pip

    Article  Google Scholar 

  36. Neuschitzer, M., Sanchez, Y., & Olar, T., et al. The complex surface chemistry of kesterites: Cu/Zn re-ordering after low temperature post deposition annealing and its role in high performance devices, 1–11

    Google Scholar 

  37. Ito, K., & Nakazawa, T. (1988). Electrical and optical properties of Stannite-type quaternary semiconductor thin films. Japanese Journal of Applied Physics, 27, 2094–2097. https://doi.org/10.1143/JJAP.27.2094

    Article  Google Scholar 

  38. Katagiri, H. (2005). Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 480–481, 426–432. https://doi.org/10.1016/j.tsf.2004.11.024

    Article  Google Scholar 

  39. Xu, X., Guo, L., Zhou, J., et al. (2021). Efficient and composition-tolerant kesterite Cu2ZnSn(S,Se)4 solar cells derived from an in situ formed multifunctional carbon framework. Advanced Energy Materials, 2102298, 1–9. https://doi.org/10.1002/aenm.202102298

    Article  Google Scholar 

  40. Zakutayev, A., Major, J.D., & Hao, X., et al. (2021). Emerging inorganic solar cell efficiency tables (version 2). Journal of Physics Energy, 3. https://doi.org/10.1088/2515-7655/abebca

  41. Ahn, K., Kim, S. Y., Kim, S., et al. (2019). Flexible high-efficiency CZTSSe solar cells on stainless steel substrates. Journal of Materials Chemistry A, 7, 24891–24899. https://doi.org/10.1039/c9ta08265d

    Article  Google Scholar 

  42. Min, J. H., Jeong, W. L., Kim, K., et al. (2020). Flexible high-efficiency CZTSSe solar cells on diverse flexible substrates via an adhesive-bonding transfer method. ACS Applied Materials & Interfaces, 12, 8189–8197. https://doi.org/10.1021/acsami.9b19909

    Article  Google Scholar 

  43. Deng, H., Sun, Q., Yang, Z., et al. (2021). Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications. Nature Communications, 12, 1–8. https://doi.org/10.1038/s41467-021-23343-1

    Article  Google Scholar 

  44. Grau, S., Giraldo, S., Saucedo, E., et al. (2019). Multi-layered photocathodes based on Cu2ZnSnSe4 absorber and MoS2 catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 7, 24320–24327. https://doi.org/10.1039/c9ta08818k

    Article  Google Scholar 

  45. Almora, O., Baran, D., & Bazan, G.C., et al. (2021). Device performance of emerging photovoltaic materials (version 1). Advanced Energy Materials, 11. https://doi.org/10.1002/aenm.202002774

  46. Andrade-Arvizu, J., Fonoll-Rubio, R., & Sanchez, Y., et al. (2020). Rear band gap grading strategies on Sn−Ge-alloyed kesterite solar cells. ACS Applied Energy Materials, 3, 10362–10375. https://doi.org/10.1021/acsaem.0c01146

  47. Kim, S., Kim, K. M., Tampo, H., et al. (2016). Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency. Applied Physics Express, 9, 1–5. https://doi.org/10.7567/APEX.9.102301

    Article  Google Scholar 

  48. Kim, S., Kim, K. M., Tampo, H., et al. (2016). Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%. Solar Energy Materials and Solar Cells, 144, 488–492. https://doi.org/10.1016/j.solmat.2015.09.039

    Article  Google Scholar 

  49. Giraldo, S., Saucedo, E., & Neuschitzer, M., et al. (2017). How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy & Environmental Science, 0–29. https://doi.org/10.1039/C7EE02318A

  50. Choubrac, L., Bär, M., Kozina, X., et al. (2020). Sn substitution by Ge: Strategies to overcome the open-circuit voltage deficit of kesterite solar cells. ACS Applied Energy Materials, 3, 5830–5839. https://doi.org/10.1021/acsaem.0c00763

    Article  Google Scholar 

  51. Choubrac, L., Brammertz, G., Barreau, N., et al. (2018). 7.6% CZGSe solar cells thanks to optimized CdS chemical bath deposition. Physica Status Solidi Applied Materials Science, 215, 1–9. https://doi.org/10.1002/pssa.201800043

    Article  Google Scholar 

  52. Benhaddou, N., Aazou, S., & Fonoll-Rubio, R., et al. (2020). Uncovering details behind the formation mechanisms of Cu2ZnGeSe4 photovoltaic absorbers. Journal of Materials Chemistry C, 8, 4003–4011. https://doi.org/10.1039/c9tc06728k

  53. Andrade-Arvizu, J., Becerril-Romero, I., & Guc, M., et al. (2020). Solar energy materials and solar cells investigation on limiting factors affecting Cu2ZnGeSe4 efficiency: Effect of annealing conditions and surface treatment. Solar Energy Materials and Solar Cells, 216. https://doi.org/10.1016/j.solmat.2020.110701

  54. Sahayaraj, S., Brammertz, G., Vermang, B., et al. (2017). Optoelectronic properties of thin film Cu2ZnGeSe4 solar cells. Solar Energy Materials and Solar Cells, 171, 136–141. https://doi.org/10.1016/j.solmat.2017.06.050

    Article  Google Scholar 

  55. Schnabel, T., Seboui, M., Bauer, A., et al. (2017). Evaluation of different buffer materials for solar cells with wide-gap Cu2ZnGeSxSe4-x absorbers. RSC Advances, 7, 40105–40110. https://doi.org/10.1039/c7ra06438a

    Article  Google Scholar 

  56. Rühle, S. (2016). Tabulated values of the Shockley-Queisser limit for single junction solar cells. Solar Energy, 130, 139–147. https://doi.org/10.1016/j.solener.2016.02.015

    Article  Google Scholar 

  57. Hood, S. N., Walsh, A., & Persson, C., et al. (2019). Status of materials and device modelling for kesterite solar cells. Journal of Physics: Energy, 1. https://doi.org/10.1088/2515-7655/ab2dda

  58. Schorr, S., Gurieva, G., Guc, M., et al. (2020). Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites. Journal of Physics: Energy, 2, 12002. https://doi.org/10.1088/2515-7655/ab4a25

    Article  Google Scholar 

  59. Park, J. S., Kim, S., & Walsh, A. (2018) Stability and electronic properties of planar defects in quaternary I2-II-IV-VI4 semiconductors. Journal of Applied Physics, 124. https://doi.org/10.1063/1.5053424

  60. Mangelis, P., Aziz, A., Da Silva, I., et al. (2019). Understanding the origin of disorder in kesterite-type chalcogenides A2ZnBQ4 (A = Cu, Ag; B = Sn, Ge; Q = S, Se): The influence of inter-layer interactions. Physical Chemistry Chemical Physics: PCCP, 21, 19311–19317. https://doi.org/10.1039/c9cp03630j

    Article  Google Scholar 

  61. Su, Z., Tan, J. M. R., Li, X., et al. (2015). Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Advanced Energy Materials, 5, 2–8. https://doi.org/10.1002/aenm.201500682

    Article  Google Scholar 

  62. Yan, C., Huang, J., Sun, K., et al. (2018). Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 3, 764–772. https://doi.org/10.1038/s41560-018-0206-0

    Article  Google Scholar 

  63. Su, Z., Liang, G., Fan, P., et al. (2020). Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution. Advanced Materials, 32, 1–12. https://doi.org/10.1002/adma.202000121

    Article  Google Scholar 

  64. Gong, Y., Qiu, R., Niu, C., et al. (2021). Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley-Queisser limit. Advanced Functional Materials, 31, 1–11. https://doi.org/10.1002/adfm.202101927

    Article  Google Scholar 

  65. Kim, S., Park, J. S., Hood, S. N., & Walsh, A. (2019). Lone-pair effect on carrier capture in Cu2ZnSnS4 solar cells. Journal of Materials Chemistry A, 7, 2686–2693. https://doi.org/10.1039/c8ta10130b

  66. Giraldo, S., Neuschitzer, M., & Thersleff, T., et al. (2015) Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer, 1–6. https://doi.org/10.1002/aenm.201501070

  67. He, M., Huang, J., Li, J., et al. (2021). Systematic efficiency improvement for Cu2ZnSn(S,Se)4 solar cells by double cation incorporation with Cd and Ge. Advanced Functional Materials, 2104528, 1–8. https://doi.org/10.1002/adfm.202104528

    Article  Google Scholar 

  68. Guo, Q., Ford, G. M., Yang, W. C., et al. (2012). Enhancing the performance of CZTSSe solar cells with Ge alloying. Solar Energy Materials and Solar Cells, 105, 132–136. https://doi.org/10.1016/j.solmat.2012.05.039

    Article  Google Scholar 

  69. Hages, C. J. (2013). Improved performance of Ge-alloyed CZTGeSSe thin- film solar cells through control of elemental losses. Progress in Photovoltaics: Research Applications, 20, 1114–1129. https://doi.org/10.1002/pip

    Article  Google Scholar 

  70. Nagaya, K., Fujimoto, S., & Tampo, H., et al. (2018). Very small tail state formation in Cu2ZnGeSe4. Applied Physics Letters, 113. https://doi.org/10.1063/1.5031799

  71. Chantana, J., Kawano, Y., Nishimura, T., et al. (2020). Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Solar Energy Materials and Solar Cells, 210, 110502. https://doi.org/10.1016/j.solmat.2020.110502

    Article  Google Scholar 

  72. Gunder, R., Márquez-Prieto, J. A., & Gurieva, G., et al. (2018). Structural characterization of off-stoichiometric kesterite-type Cu2ZnGeSe4 compound semiconductors: From cation distribution to intrinsic point defect density. CrystEngComm, 20, 1491–1498. https://doi.org/10.1039/c7ce02090b

  73. Gurieva, G., Többens, D. M., Valakh, M. Y., & Schorr, S. (2016). Cu-Zn disorder in Cu2ZnGeSe4: A complementary neutron diffraction and Raman spectroscopy study. Journal of Physics and Chemistry of Solids, 99, 100–104. https://doi.org/10.1016/j.jpcs.2016.08.017

    Article  Google Scholar 

  74. Guc, M., Levcenko, S., & Izquierdo-Roca, V., et al. (2013). Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals. Journal of Applied Physics, 114. https://doi.org/10.1063/1.4830028

  75. Khelifi, S., Brammertz, G., & Choubrac, L., et al. (2021). The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application. Solar Energy Materials and Solar Cells, 219. https://doi.org/10.1016/j.solmat.2020.110824

  76. Vermang, B., Brammertz, G., Meuris, M., et al. (2019). Wide band gap kesterite absorbers for thin film solar cells: Potential and challenges for their deployment in tandem devices. Sustainable Energy & Fuels, 3, 2246–2259. https://doi.org/10.1039/c9se00266a

    Article  Google Scholar 

  77. Ruiz-Perona, A., Sánchez, Y., & Guc, M., et al. (2020). Effect of Na and the back contact on Cu2Zn(Sn,Ge)Se4 thin-film solar cells: Towards semi-transparent solar cells. Solar Energy, 206, 555–563. https://doi.org/10.1016/j.solener.2020.06.044

Download references

Acknowledgements

Authors very well acknowledge the funding received through the INFINITE CELL project (H2020-MSCA-RISE-2017 777968) and CUSTOM-ART(Grant Agreement no. 952982). Marcel Placidi acknowledges the financial support from the Spanish Ministry of Science, Innovation, and Universities within the Ramón y Cajal Program (RYC-2017-23758). The authors from the IREC belong to the SEMS (Solar Energy Materials and Systems) Consolidated Research Group of the “Generalitat de Catalunya” (ref. 2017 SGR 862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Saucedo .

Editor information

Editors and Affiliations

Appendix

Appendix

CZT(S,Se):

Cu2ZnSn(S,Se)4.

CZTS:

Cu2ZnSnS4.

CZTSe:

Cu2ZnSnSe4.

CZGSe:

Cu2ZnGeSe4.

CZG(S,Se):

Cu2ZnGeSxSe4-x.

CRM:

Critical raw materials.

Voc:

Open circuit voltage.

STEM:

Scanning transmission electron microscopy.

HAADF:

High angle annular dark field.

EELS:

Electron energy loss spectroscopy.

SEM:

Scanning electron microscope.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, K.J., Giraldo, S., Placidi, M., Jehl Li-Kao, Z., Saucedo, E. (2022). Recent Advances in the Kesterite-Based Thin Film Solar Cell Technology: Role of Ge. In: Singh, U.P., Chaure, N.B. (eds) Recent Advances in Thin Film Photovoltaics. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3724-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3724-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3723-1

  • Online ISBN: 978-981-19-3724-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics