Skip to main content

Fundamentals of Light Sources

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 885 Accesses

Abstract

A broad selection of light sources is available for the biophotonic UV, visible, or infrared regions. These sources include arc lamps, light emitting diodes, laser diodes, superluminescent diodes, and various types of gas, solid-state, and optical fiber lasers. This chapter first defines some basic terminology used in radiometry, which deals with the measurement of optical radiation. Understanding this terminology is important when determining and specifying the degrees of interaction of light with tissue. Next the characteristics of optical sources for biophotonics are described. This includes the spectrum over which the source emits, the emitted power levels as a function of wavelength, the optical power per unit solid angle emitted in a given direction, the light polarization, and the coherence properties of the emission. In addition, depending on the operating principles of the light source, it can emit light in either a continuous mode or a pulsed mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Meyer-Arendt, Radiometry and photometry: units and conversion factors. Appl. Optics 7(10), 2081–2084 (1968)

    Article  ADS  Google Scholar 

  2. W. McCluney, Introduction to Radiometry and Photometry, 2nd ed. (Artech House, 2014)

    Google Scholar 

  3. M. Bukshtab, Photometry, Radiometry, and Measurements of Optical Losses (Springer, 2019)

    Google Scholar 

  4. D. Nakar, A. Malul, D. Feuermann, J.M. Gordon, Radiometric characterization of ultrahigh radiance xenon short-arc discharge lamps. Appl. Opt. 47(2), 224–229 (2008)

    Article  ADS  Google Scholar 

  5. zeiss-campus.magnet.fsu.edu. Microscope light sources; Metal halide lamps. Accessed Feb 2022

    Google Scholar 

  6. Hamamatsu Photonics, Super-Quiet Xenon Flash Lamp Series, www.hamamatsu.com (2019)

  7. M.A. Hadis, P.R. Cooper, M.R. Milward, P.C. Gorecki, E. Tarte, J. Churm, W.M. Palin, Development and application of LED arrays for use in phototherapy research. J. Biophotonics 10(11), 1514–1525 (2017)

    Article  Google Scholar 

  8. C. Murawski, M.C. Gather. Emerging biomedical applications of organic light-emitting diodes. Adv. Optical Mater. 9, article 2100269 (2021)

    Google Scholar 

  9. J. McKendry, E. Gu, N. McAlinden, N. Lauren, K. Mathieson, M.D. Dawson, Micro-LEDs for biomedical applications. Semicond. Semimetals 106, 57–94 (2021)

    Article  Google Scholar 

  10. W.Y. Wu, Y.H. Hsu, Y.F. Chen, Y.R. Wu, H.W. Liu, T.Y. Tu, P.P.C. Chao, C.S. Tan, R.H. Horng, Wearable devices made of a wireless vertical-type light-emitting diode package on a flexible polyimide substrate with a conductive layer. ACS Appl. Electron. Mater. 3(2), 979–987 (2021)

    Article  Google Scholar 

  11. S.O. Kasap, Principles of Electronic Materials and Devices, 4th ed. (McGraw-Hill, 2018)

    Google Scholar 

  12. S.M. Sze, Y. Li, K.K. Ng. Physics of Semiconductor Devices, 4th ed. (Wiley, 2021)

    Google Scholar 

  13. G. Keiser, Fiber Optic Communications (Springer, 2021)

    Google Scholar 

  14. J. Ye, L. Chen, X. Li, Q. Yuan, Z. Gao. Review of optical freeform surface representation technique and its application. Opt. Eng. 56, article 110901 (2017)

    Google Scholar 

  15. L.T. Chen, G. Keiser, Y.R. Huang, S.L. Lee, A simple design approach of a Fresnel lens for creating uniform light-emitting diode light distribution patterns. Fiber Integ. Opt. 33(5–6), 360–382 (2014)

    Article  ADS  Google Scholar 

  16. R. Riesenberg, A. Wutting, Optical sources, Chap. 4, in Handbook of Biophotonics: Vol. 1: Basics and Techniques, ed. by J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann (Wiley, 2011), pp. 263–295

    Google Scholar 

  17. S. Wieneke, C. Gerhard. Lasers in Medical Diagnosis and Therapy (IOP Science, 2018)

    Google Scholar 

  18. J.T. Lin, Progress of medical lasers: fundamentals and applications. Med. Devices Diagn. Eng. 2(1), 36–41 (2016)

    Google Scholar 

  19. C. Poudel, C.F. Kaminski, Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications. J. Opt. Soc. Amer. B 36(2), A139–A153 (2019)

    Article  ADS  Google Scholar 

  20. M. Michalik, J. Szymańczyk, M. Stajnke, T. Ochrymiuk, A. Cenian, Medical applications of diode lasers: pulsed versus continuous wave (cw) regime. Micromachines 12, 710 (2021)

    Article  Google Scholar 

  21. O.O. Moatlhodi, N.M.J. Ditshego, R. Samikannu, Vertical cavity surface emitting lasers as sources for optical communication systems: a review. J. Nano Res. 65, 65–96 (2020)

    Google Scholar 

  22. B. Lendl. Quantum cascade lasers for infrared spectroscopy: theory, state of the art, and applications. Spectroscopy 28(4) (2013)

    Google Scholar 

  23. M.S. Vitiello, A. Tredicucci, Physics and technology of terahertz quantum cascade lasers. Adv. Physics: X 6(1), article 1893809 (2021)

    Google Scholar 

  24. A.M. Luke, S. Mathew, M.M. Altawash, B.M. Madan, Lasers: a review with their applications in oral medicine. J. Lasers Med. Sci. 10(4), 324–329 (2019)

    Article  Google Scholar 

  25. H. Abbasi et al., Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy. Biomed. Opt. Exp. 11(4), 1790–1807 (2020)

    Article  Google Scholar 

  26. E. Khalkhal, M. Rezaei-Tavirani, M.R. Zali, Z. Akbari, The evaluation of laser application in surgery: a review article. J. Lasers Med. Sci. 10(suppl. 1), S104–S111 (2019)

    Article  Google Scholar 

  27. L.M. Beltrán Bernal, F. Canbaz, S.E. Darwiche, K.M.R. Nuss, N.F. Friederich, P.C. Cattin, A. Zam. Optical fibers for endoscopic high-power Er:YAG laserosteotomy. J. Biomed. Opt. 26(9), article 095002 (2021)

    Google Scholar 

  28. F. Todorov et al., Active optical fibers and components for fiber lasers emitting in the 2-μm spectral range. Materials 13, article 5177 (2020)

    Google Scholar 

  29. C. Kong, C. Pilger, H. Hachmeister, X. Wei, T.H. Cheung, C.S.W. Lai, T. Huser, K.K. Tsia, K.K.Y. Wong, Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. Biomed. Opt. Express 8(11), 4921–4932 (2017)

    Article  Google Scholar 

  30. D. Stachowiak, J. Bogusławski, A. Głuszek, Z. Łaszczych, M. Wojtkowski, G. Sobo, Frequency-doubled femtosecond Er-doped fiber laser for two-photon excited fluorescence imaging. Biomed. Opt. Express 11(8), 4431–4442 (2020)

    Article  Google Scholar 

  31. D. Heckscher, J. Zeng, P. Samolis, M.Y. Sander, S.E. Wason, D.S. Wang, The effect of holmium laser fiber bending radius on power delivery during flexible ureteroscopy. J. Endourology 34(6), 682–686 (2020)

    Article  Google Scholar 

  32. G. Genty, S. Coen, J.M. Dudley, Fiber supercontinuum sources (invited). J. Opt. Soc. Amer. B, Opt. Phys. 24(8), 1771–1785 (2007)

    Google Scholar 

  33. M.K. Lu, H.Y. Lin, C.C. Hsieh, F.J. Kao, Supercontinuum as a light source for miniaturized endoscopes. Biomed. Opt. Express 7(9), 3335–3343 (2016)

    Article  Google Scholar 

  34. J. Zeng, A.E. Akosman, M.Y. Sander, Supercontinuum generation from a thulium ultrafast fiber laser in a high NA silica fiber. IEEE Photonics Technol. Lett. 31(22), 1787–1790 (2019)

    Article  ADS  Google Scholar 

  35. Example: ThorLabs, NIR superluminescent diodes data sheets. www.thorlabs.com. Accessed Feb 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keiser, G. (2022). Fundamentals of Light Sources. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-19-3482-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3482-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3481-0

  • Online ISBN: 978-981-19-3482-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics