Skip to main content

Genetics and Molecular Biology

  • Chapter
  • First Online:
Wilms’ Tumor

Abstract

A conundrum of genetic and epigenetic pathways has been implicated in the etiopathogenesis of Wilms’ tumor (WT). The WT1, WT2, and WTX genes are commonly associated with syndromic WT. The current concepts in the molecular biology of WT are complex and evolving. This chapter would discuss the genetic events in the normal and pathological nephrogenesis, Knudson double-hit hypothesis, the various other genetic pathways, and the known genetic mutations associated with WT.

The learning objectives of this chapter would include to know about the genes and genetic pathways especially WT1 and WT2 genes, present status of Knudson’s two-hit hypothesis, current conceptual molecular basis of biological events of WT, role of genetics and molecular markers in prognostication, therapeutic manipulation of genetic steps, and the biological basis of future treatment of WT. The syndromes associated with WT are discussed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar V, Abbas AK, Aster JC. Neoplasia. In: Kumar V, Abbas AK, Aster JC, editors. Robbins Basic Pathology. 9th ed. Philadelphia: Elsevier; 2013. p. 161–214.

    Google Scholar 

  2. Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18:698–712. https://doi.org/10.1016/j.devcel.2010.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hohenstein P, Pritchard-Jones K, Charlton J. The yin and yang of kidney development and Wilms’ tumors. Genes Dev. 2015;29:467–82. https://doi.org/10.1101/gad.256396.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coppes MJ, Pritchard-Jones K. Principles of Wilms tumour biology. Urol Clin North Am. 2000;27:423–34. https://doi.org/10.1016/S0094-0143(05)70090-2.

    Article  CAS  PubMed  Google Scholar 

  5. Herzlinger D, Koseki C, Mikawa T, Al-Awqati Q. Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction. Development. 1992;114:565–72.

    Article  CAS  Google Scholar 

  6. van Heyningen V, Hastie ND. Wilms’ tumour: reconciling genetics and biology. Trends Genet. 1992;8:16–21. https://doi.org/10.1016/0168-9525(92)90019-z.

    Article  PubMed  Google Scholar 

  7. Beckwith JB. Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations. Am J Med Genet. 1998;79:268–73. https://doi.org/10.1002/(sici)1096-8628(19981002)79:4<268::aid-ajmg7>3.0.co;2-i.

    Article  CAS  PubMed  Google Scholar 

  8. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell. 1990;60:509–20. https://doi.org/10.1016/0092-8674(90)90601-a.

    Article  CAS  PubMed  Google Scholar 

  9. Huff V, Jaffe N, Saunders GF, Strong LC, Villalba F, Ruteshouser EC. WT1 exon 1 deletion/insertion mutations in Wilms tumor patients, associated with di- and trinucleotide repeats and deletion hotspot consensus sequences. Am J Hum Genet. 1995;56:84–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet. 1996;13:461–3. https://doi.org/10.1038/ng0896-461.

    Article  CAS  PubMed  Google Scholar 

  11. Dome JS, Huff V. Wilms tumor overview. In: Pagon RA, Adam MP, Bird TD, et al., editors. GeneReviews. Seattle: University of Washington; 2003.

    Google Scholar 

  12. Hennigar RA, O’Shea PA, Grattan-Smith JD. Features of nephrogenic rests and nephroblastomatosis. Adv Anat Pathol. 2001;8:276–89. https://doi.org/10.1097/00125480-200109000-00005.

    Article  CAS  PubMed  Google Scholar 

  13. Knudson AG Jr, Strong LC. Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Cancer Inst. 1972;48:313–24.

    PubMed  Google Scholar 

  14. Park S, Bernard A, Bove KE, Sens DA, Hazen-Martin DJ, Garvin AJ, et al. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms’ tumour. Nat Genet. 1993;5:363–7. https://doi.org/10.1038/ng1293-363.

    Article  CAS  PubMed  Google Scholar 

  15. Rettner R. Epigenetics: definitions and examples. New York: Future US Inc.; 2013.

    Google Scholar 

  16. Al-Hussain T, Ali A, Akhtar M. Wilms tumor: an update. Adv Anat Pathol. 2014;21:166–73. https://doi.org/10.1097/PAP.0000000000000017.

    Article  PubMed  Google Scholar 

  17. McDonald JM, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res. 1998;58:1387–90.

    CAS  PubMed  Google Scholar 

  18. Maiti S, Alam R, Amos CI, Huff V. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res. 2000;60:6288–92.

    CAS  PubMed  Google Scholar 

  19. Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 1999;59:3880–2.

    CAS  PubMed  Google Scholar 

  20. Pritchard-Jones K, Gordan M, Vujani GM. Recent developments in the molecular pathology of paediatric renal tumors. Open Pathol J. 2010;4:32–9.

    Google Scholar 

  21. Dong L, Pietsch S, Englert C. Towards an understanding of kidney diseases associated with WT1 mutations. Kidney Int. 2015;88:684–90. https://doi.org/10.1038/ki.2015.198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams RD, Chagtai T, Alcaide-German M, Apps J, Wegert J, Popov JS, et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget. 2015;6:7232–43. https://doi.org/10.18632/oncotarget.3377.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Torrezan G, Ferreira E, Nakahata A, Barros B, Castro M, Krepischi A, et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun. 2015;5:4039. https://doi.org/10.1038/ncomms5039.

    Article  CAS  Google Scholar 

  24. Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang TC, et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun. 2014;2:4802. https://doi.org/10.1038/ncomms5802.

    Article  CAS  PubMed  Google Scholar 

  25. Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell. 2015;27:286–97. https://doi.org/10.1016/j.ccell.2015.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wegert J, Ishaque N, Vardapour R, Geörg C, Gu Z, Bieg M, et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell. 2015;27:298–311. https://doi.org/10.1016/j.ccell.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  27. Scott RH, Anne Murray A, Baskcomb L, Turnbull C, Loveday C, Al-Saadi R, et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget. 2012;3:327–35. https://doi.org/10.18632/oncotarget.468.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91. https://doi.org/10.1016/0092-8674(93)90515-r.

    Article  CAS  PubMed  Google Scholar 

  29. Hohenstein P, Hastie ND. The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet. 2006;15:196–201. https://doi.org/10.1093/hmg/ddl196.

    Article  CAS  Google Scholar 

  30. Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci U S A. 1991;88:9618–22. https://doi.org/10.1073/pnas.88.21.9618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Satoh Y, Nakadate H, Nakagawachi T, Higashimoto K, Joh K, Masaki Z, et al. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br J Cancer. 2006;95:541–7. https://doi.org/10.1038/sj.bjc.6603302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grill C, Sun Itsch S, Hatz M, Hauser-Kronberger C, Leuschner I, Hoefler G, et al. Activation of beta-catenin is a late event in the pathogenesis of nephroblastomas and rarely correlated with genetic changes of the APC gene. Pathology. 2011;43:702–6. https://doi.org/10.1097/PAT.0b013e32834bf65c.

    Article  CAS  PubMed  Google Scholar 

  33. Li CM, Kim CE, Margolin AA, Guo M, Zhu J, Mason JM, et al. CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms’ tumors. Am J Pathol. 2004;65:1943–53. https://doi.org/10.1016/s0002-9440(10)63246-4.

    Article  Google Scholar 

  34. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315:642–5. https://doi.org/10.1126/science.1137509.

    Article  CAS  PubMed  Google Scholar 

  35. Jenkins ZA, van Kogelenberg M, Morgan T, Jeffs A, Fukuzawa R, Pearl E, et al. Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet. 2009;41:95–100. https://doi.org/10.1038/ng.270.

    Article  CAS  PubMed  Google Scholar 

  36. Perotti D, Gamba B, Sardella M, Terenzianai M, Collini P, Pession A, et al. Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors. Oncogene. 2008;27:4625–32. https://doi.org/10.1038/onc.2008.93.

    Article  CAS  PubMed  Google Scholar 

  37. Yoda H, Inoue T, Shinozaki Y, Lin J, Watanabe T, Koshikawa N, et al. Direct targeting of MYCN gene amplification by site specific DNA alkylation in neuroblastoma. Cancer Res. 2019;79:830–40. https://doi.org/10.1158/0008-5472.CAN-18-1198.

    Article  CAS  PubMed  Google Scholar 

  38. Schaub R, Burger A, Bausch D, Niggli FK, Schäfer BW, Betts D, et al. Array comparative genomic hybridization reveals unbalanced gain of the MYCN region in Wilms tumors. Cancer Genet Cytogenet. 2007;72:61–5. https://doi.org/10.1016/j.cancergencyto.2006.08.010.

    Article  CAS  Google Scholar 

  39. Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey M, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23:7312–21. https://doi.org/10.1200/JCO.2005.01.2799.

    Article  CAS  PubMed  Google Scholar 

  40. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26:1268–86. https://doi.org/10.1101/gad.190678.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Menke AL, Shvarts A, Riteco N, van Ham RC, van der Eb AJ, Jochemsen AG. Wilms’ tumor 1-KTS isoforms induce p53-independent apoptosis that can be partially rescued by expression of the epidermal growth factor receptor or the insulin receptor. Cancer Res. 1997;57:1353–63.

    CAS  PubMed  Google Scholar 

  42. Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, et al. Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet. 1994;7:440–7. https://doi.org/10.1038/ng0794-440.

    Article  CAS  PubMed  Google Scholar 

  43. Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet. 1994;7:433–9. https://doi.org/10.1038/ng0794-433.

    Article  CAS  PubMed  Google Scholar 

  44. Scott RH, Douglas J, Baskcomb L, Nygren AO, Birch JM, Cole TR, et al. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) robustly detects and distinguishes 11p15 abnormalities associated with overgrowth and growth retardation. J Med Genet. 2008;45:106–13. https://doi.org/10.1136/jmg.2007.053207.

    Article  CAS  PubMed  Google Scholar 

  45. Chagtai T, Zill C, Dainese L, Wegert J, Savola S, Popov S, et al. Gain of 1q As a prognostic biomarker in Wilms Tumors treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 Trial: a SIOP Renal Tumours Biology Consortium Study. J Clin Oncol. 2016;34:3195–203. https://doi.org/10.1200/JCO.2015.66.0001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gratias EJ, Dome JS, Jennings LJ, Chi YY, Tian J, Anderson J, et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J Clin Oncol. 2016;34:3189–94. https://doi.org/10.1200/JCO.2015.66.1140.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, G.R., Bee, A., Peters, N.J. (2022). Genetics and Molecular Biology. In: Sarin, Y.K. (eds) Wilms’ Tumor. Springer, Singapore. https://doi.org/10.1007/978-981-19-3428-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3428-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3427-8

  • Online ISBN: 978-981-19-3428-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics