Skip to main content

Region Specific Consideration for GMPE Development, Representative Seismic Hazard Estimation and Rock Design Spectrum for Himalayan Region

  • Chapter
  • First Online:
Advances in Earthquake Geotechnics

Abstract

Ground motion prediction equation (GMPE) is a major contributing component in establishing seismic hazard values, design coefficient, and risk level for disaster management in the region. Many seismic hazard analyses at a regional level are carried out using GMPEs developed elsewhere. In this study, realistic GMPE function form, suitable GMPEs with ranks and weights for different distance segments and the best design spectrum shape for the active region of the Himalayas is presented by analysis of regional recorded earthquake data. About 241 earthquake data recorded in rock sites in the Himalayan region has been collected and used here. The functional form of GMPE for the Himalayan region is selected by considering the mixed-effect analysis of the residual of the recorded and simulated ground motion. About 43 GMPEs applicable to the Himalayan region are used in the study, of which 12 were developed for the region. We have carried out a systematic analysis by Log-likelihood (LLH) method to test the applicability of the GMPEs for the Himalayan region using recorded earthquake data. Ranks and weights of applicable GMPEs are estimated for the segmented distance of <100 km, 100–300 km, and more than 300 km. These are helpful in seismic hazard analyses of different cities in North India. Further, we arrived at the design spectrum shape using bedrock recorded data through the Tripartite plot of acceleration, velocity, and displacement-control period and factors. It is noticed that the design spectrum shape arrived is different from the currently used design spectrum shape in the Indian seismic code. Based on regional data and study; there may be a need to reach a design spectrum shape for different soil classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson, N. A., & Litehiser, J. J. (1989). Attenuation of vertical peak accelerations. Bulletin of the Seismological Society of America, 79, 549–580.

    Google Scholar 

  • Abrahamson, N., & Silva, W. (2008). Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra, 24, 67–97.

    Article  Google Scholar 

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground-motion relation for active crustal regions. Earthquake Spectra. https://doi.org/10.1193/070913EQS198M.

  • Aghabarati, H., & Tehranizadeh, M. (2009). Near-source ground motion attenuation relationship for PGA and PSA of vertical and horizontal components. Bulletin of Earthquake Engineering, 7, 609–635.

    Google Scholar 

  • Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV and spectral acceleration in Europe, the Mediterranean region and the Middle East. Seismological Research Letters, 81,195–206.

    Google Scholar 

  • Akkar, S., Sandikkaya, M. A., & Bommer, J. J. (2014) Empirical ground motion models for point and extended-source crustal earthquake scenarios in Europe and the Middle East. Seismological Research Letters, 12, 359–387.

    Google Scholar 

  • Ambraseys, N., Douglas, J. S., Sarma, K., & Smit, P. M. (2005). Equation for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and the spectral acceleration. Bulletin of Earthquake Engineering, 3, 1–53.

    Article  Google Scholar 

  • Anbazhagan, P., Kumar, A., & Sitharam, T. G. (2013) Ground motion prediction equation considering combined dataset of recorded and simulated ground motions. Soil Dynamics and Earthquake Engineering, 53, 92–108.

    Google Scholar 

  • Anbazhagan, P., Bajaj, K., & Patel, S. (2015). Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Natural Hazards, 78(2), 1163–1195.

    Article  Google Scholar 

  • Anbazhagan, P., Uday, A., Moustafa, S. S. R., & Al-Arifi, N. S. N. (2016a). Pseudo-spectral damping reduction factors for the himalayan region considering recorded ground-motion data. Plos One, 11(9), e0161137.

    Google Scholar 

  • Anbazhagan, P., Bajaj, K., Moustafa, S. S. R., & Al-Arifi, N. S.N. (2016b). Relationship between intensity and recorded ground motion and spectral parameters for the Himalayan region. Bulletin of the Seismological Society of America, 106(4), pp. 1672–1689.

    Google Scholar 

  • Anbazhagan, P., Janarthan, B., & Shaivan, H. S. (2019a). Empirical correlation between sediment thickness and resonant frequency using HVSR for the Indo-Gangetic Plain. Current Science, 117(9), 1182–1491.

    Article  Google Scholar 

  • Anbazhagan, P., Srilakshmi, K. N., Bajaj, K., Moustafa, S. S. R., & Al-Arifi, N. S. N. (2019b). Determination of Seismic site classification of seismic recording stations in the Himalayan region using HVSR method. Soil Dynamics and Earthquake Engineering, 116, 304–316.

    Google Scholar 

  • Anbazhagan, P., Bajaj, K., Matharu, K., Moustafa, S. S. R., & Al-Arifi, N. S. N. (2019c). Probabilistic seismic hazard analysis using the logic tree approach—Patna district (India). Natural Hazards and Earth System Sciences, 19(10), 2097–2115. https://doi.org/10.5194/nhess-19-2097-2019.

  • Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their applications to Cascadian and other regions. Bulletin of the Seismological Society of America, 93, 1703–1717.

    Article  Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2018). A comparison of different functional form and modification of NGA-West 2 Ground-Motion Prediction Equation for the Himalayan region. Journal of Seismology, 22(1), 161–185.

    Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2019a). Seismic site classification and correlation between Vs and SPT-N for deep soil sites in Indo-Gangetic Basin. Journal of Applied Geophysics, 163, 55–72.

    Article  Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2019b). Regional seismological model parameter estimation and development of GMPE model for the active region of Himalaya. Soil Dynamics and Earthquake Engineering, 126, 105825.

    Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2020). Comprehensive amplification estimation of the Indo Gangetic Basin deep soil sites in the seismically active area. Soil Dynamics and Earthquake Engineering, 127, 105855.

    Article  Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2021a). Detailed seismic hazard, disaggregation and sensitivity analysis for Indo Gangetic basin. Pure and Applied Geophysics,178, 1977–1999.

    Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2021b) Identification of shear modulus reduction and damping curve for deep and shallow sites: Kik-Net data. Journal of Earthquake Engineering. Published Online: https://doi.org/10.1080/13632469.2019.1643807.

  • Bilham, R. (2015). Raising Kathmandu. Nature Geoscience, 8, 582–584.

    Article  Google Scholar 

  • Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., & Augliera, P. (2014). Pan-European ground motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 S using the RESOURCE dataset. Bulletin of Earthquake Engineering, 12, 391–430.

    Google Scholar 

  • Biot, M. A. (1941). A mechanical analyzer for the prediction of earthquake stresses. Bulletin of the Seismological Society of America, 31, 151–71.

    Google Scholar 

  • BIS IS 1893–2002 (Part 1): Indian standard criteria for earthquake resistant design of structures. Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi.

    Google Scholar 

  • BIS. (2016). IS 1893–2016 (Part 1): Indian standard criteria for earthquake resistant design of structures. Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi.

    Google Scholar 

  • Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., & Bungum, H., & Fäh, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81(5), 783–793.

    Google Scholar 

  • Boore, D. M., & Bommer, J. (2005). Processing of strong motion accelerograms: Needs, options and consequences. Soil Dynamics and Earthquake Engineering, 25, 93–115.

    Article  Google Scholar 

  • Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV and 5% damped PSA at spectral periods between 0.01 and 10.0 s. Earthq Spectra, 24(1), 99–138.

    Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGAWest 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.

    Article  Google Scholar 

  • Campbell, K. W. (1997). Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity and pseudo-absolute acceleration response spectra. Seismological Research Letters, 68(1), 154–179.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5 % damped linear elastic response spectra for period ranging from 0.01 to 10 s. Earthquake Spectra, 24, 139–171.

    Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West 2 ground motion model for the average horizontal components of PGA, PGV, and 5%-damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1115.

    Google Scholar 

  • Cauzzi, C., & Faccioli, E. (2008). Broadband (0.05 to 20s) prediction of displacement response spectra based on worldwide digital records. Journal of Seismology, 12(4), 453–475.

    Google Scholar 

  • CEN (2005) EN 1998-3 Eurocode 8: design of structures for earthquake resistance, part 3: assessment and retrofitting of buildings. European Committee for Standardization.

    Google Scholar 

  • Chiou, B. S. J., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24(1), 173–215.

    Article  Google Scholar 

  • Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30, 1117–1153.

    Article  Google Scholar 

  • Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites. Journal of Seismology, 10(2), 137–156.

    Article  Google Scholar 

  • Das, S., Gupta, I. D., & Gupta, V. K. (2006). A probabilistic seismic hazard analysis of Northeast India. Earthquake Spectra, 22, 1–27.

    Article  Google Scholar 

  • Delavaud, E., Scherbaum, F., Kuehn, N., & Allen, T. (2012). Testing the global applicability of ground-motion prediction equations for active shallow crustal regions. Bulletin of the Seismological Society of America, 102(2), 702–721.

    Article  Google Scholar 

  • Delavaud, E., Scherbaum, F., Kuehn, N., & Riggelsen, C. (2009). Information-theoretic selection of ground-motion prediction equations for seismic hazard analysis: An applicability study using Californian data. Bulletin of the Seismological Society of America, 99, 3248–3263.

    Article  Google Scholar 

  • Douglus, J (2020). Ground motion prediction equations 1964–2020. http://www.gmpe.org.uk/gmpereport2014.html.

  • Gupta, I. D. (2010). Response spectral attenuation relations for inslab earthquakes in Indo-Burmese subduction zone. Soil Dynamics and Earthquake Engineering, 30, 368–377.

    Article  Google Scholar 

  • Hall, W. J., Mohraz, B., & Newmark, N. M. (1975). Statistical studies of vertical and horizontal earthquake spectra. Nathan M. Newmark Consulting Engineering Services, Urbana, Illinois.

    Google Scholar 

  • Housner, G. W. (1959). Behavior of structures during earthquakes. Journal of Engineering Mechanics Division, ASCE, 85(EM 4), 109–29.

    Google Scholar 

  • Housner, G. W. (1970). Design spectrum, Chapter 5 in earthquake engineering. New Jersey: R.L Wiegel: Prentice-Hall.

    Google Scholar 

  • Idriss, I. M. (2008). An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 16, 363–372.

    Google Scholar 

  • Idriss, I. M. (2014). An NGA-West 2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra. https://doi.org/10.1193/070613EQS195M

    Article  Google Scholar 

  • Iyengar, R. N., & Ghosh, S. (2004). Microzonation of earthquake hazard in Greater Delhi area. Current Science, 87(9), 1193–1202.

    Google Scholar 

  • Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., & Fukushima, Y. (2006). A new attenuation relation for strong ground motion in Japan based on recorded data. Bulletin of the Seismological Society of America, 96, 879–897.

    Article  Google Scholar 

  • Kumar, A., Mittal, H., Sachdeva, R., & Kumar, A. (2012). Indian strong motion instrumentation network. Seismological Research Letters, 83, 59–66.

    Article  Google Scholar 

  • Lin, P. S., & Lee, C. H. (2008). Ground-motion attenuation relationship for subduction-zone earthquakes in Northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220–240.

    Article  Google Scholar 

  • Malhotra, P. K. (2001) Response spectrum of incompatible acceleration, velocity and displacement histories. Earthquake Engineering and Structural Dynamics, 30(2), 279–286.

    Google Scholar 

  • Malhotra, P. K. (2006). Smooth spectra of horizontal and vertical ground motions. Bulletin of the Seismological Society of America, 96(2), 506–518.

    Article  Google Scholar 

  • Mohraz, B. (1976). A study of earthquake response spectra for different geological conditions. Bulletin of the Seismological Society of America, 66(3), 915–935.

    Google Scholar 

  • Mohraz, B., Hall, W. J., & Newmark,. N. M. (1972) A study of vertical and horizontal earthquake spectra, AEC Report WASH-1255, Nathan M. Newmark Consulting Engineering Services, Urbana, Illinois.

    Google Scholar 

  • Motazedian, D., & Atkinson, G. M. (2005). Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95, 995–1010.

    Article  Google Scholar 

  • Nath, S. K., Vyas, M., Pal, I., & Sengupta, P. (2005). A hazard scenario in the Sikkim Himalaya from seismotectonics spectral amplification source parameterization and spectral attenuation laws using strong motion seismometry. Journal of Geophysical Research, 110, 1–24.

    Article  Google Scholar 

  • Nath, S. K., Raj, A., Thingbaijam, K. K. S., Kumar, A. (2009). Ground motion synthesis and seismic scenario in Guwahati city; A stochastic approach Seismological Research Letters, 80(2), 233–42.

    Google Scholar 

  • NDMA. (2011). Development of probabilistic hazard map of India. Retrieved July 2017, from http://ndma.gov.in/ndma/disaster/earthquake/PSHATechReportMarch%202011.pdf. Report.

  • Newmark, N. M., & Hall, W. J. (1969). Seismic design criteria for nuclear reactor facilities. In Proceedings of World Conference on Earthquake Engineering, 4th Santiago, Chile, B-4 (pp. 37–50).

    Google Scholar 

  • Newmark, N. M., & Hall, W. J. (1982). Earthquake spectra and design. Earthquake Engineering Research Institute, Oakland, California.

    Google Scholar 

  • Ramkrishnan, R., Sreevalsa, K., & Sitharam, T. G. (2020) Strong motion data based regional ground motion prediction equations for North East India based on non-linear regression models. Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2020.1778586.

  • Scherbaum, F., Delavaud, E., & Riggelsen, C. (2009). Model selection in seismic hazard analysis: an information theoretic perspective. Bulletin of the Seismological Society of America, 99, 3234–3247.

    Article  Google Scholar 

  • Sharma, M. L., & Bungum, H. (2006). New strong ground motion spectral acceleration relation for the Himalayan region. In First European Conference on Earthquake Engineering and Seismology (p. 1459).

    Google Scholar 

  • Sharma, M. L., Douglas, J., Bungum, H., & Kotadia, J. (2009). Ground-motion prediction equations based on data from Himalayan and Zagros regions. Journal of Earthquake Engineering, 13, 1191–1210.

    Article  Google Scholar 

  • Singh, R. P., Aman, A., & Prasad, Y. J. J. (1996). Attenuation relations for strong ground motion in the Himalayan region. Pure and Applied Geophysics, 147, 161–180.

    Article  Google Scholar 

  • Spudich, P., Joyner, W. B., Lindh, A. G., Boore, D. M., Margaris, B. M., & Fletcher, J. B. (1999). SEA99: a revised ground motion prediction relation for use in Extensional tectonic regions. Bulletin Seismological Society of America, 89(5), 1156–1170.

    Google Scholar 

  • Srivastava, H. N., Verma, M., Bansal, B. K., & Sutar, A. K. (2015). Discriminatory characteristics of seismic gaps in Himalaya. https://doi.org/10.1080/19475705.2013.839483.

  • Strasser, F. O., Abrahamson, N. A., & Bommer, J. J. (2009). Sigma: Issues, insights, and challenges. Seismological Research Letters, 80, 41–56.

    Article  Google Scholar 

  • Takahashi, T., Saiki, T., Okada, H., Irikura, K., Zhao, J. X., Zhang, J., Thoi, H. K., Somerville, P. G., Fukushima, Y., & Fukushima, Y. (2004). Attenuation models for response spectra derived from Japanese strong-motion records accounting for tectonic source types. In 13th World Conference of Earthquake Engineering, Vancouver, BC, Canada, paper 1271.

    Google Scholar 

  • Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion relationship for subduction earthquakes. Seismological Research Letters, 68, 58–73.

    Article  Google Scholar 

  • Zhao, J. X., Jiang, F., Shi, P., Xing, H., Huang, H., Hou, R., Zhang, Y., Yu, P., Lan, X., Rhoades, D. A., Somerville, P. G., Irikura, K., & Fukushima, Y. (2016a). Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106, 1535–1551.

    Google Scholar 

  • Zhao, J. X., Liang, X., Jiang, F., Xing, H., Zhu, M., Hou, R., Zhang, Y., Lan, X., Rhoades, D. A., Irikura, K., Fukushima, Y., & Somerville, P. G. (2016b). Ground-motion prediction equations for subduction interface earthquakes in japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106, 1518–1534.

    Google Scholar 

  • Zhao, J. X., Zhou, S., Zhou, J., Zhou, C., Zhang, H., Zhang, Y., Gao, P., Lan, X., Rhoades, D. A., Fukushima, Y., Somerville, P. G., & Irikura, K. (2016c). Ground-motion prediction equations for shallow crustal and upper-mantle earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106, 1552–1569.

    Google Scholar 

  • Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., & Fukushima, Y. (2016d). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96, 898–913.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful for funding and support by the Science and Engineering Research Board (SERB), Department of Science and Technology [SERB/F/162/2015-2016]. Author thanks M/s. SECON Private Limited, Bangalore for funding project “Effect of Shear Wave Velocity Calibration on Amplification of Shallow and Deep Soil Sites.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Anbazhagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anbazhagan, P., Bajaj, K. (2023). Region Specific Consideration for GMPE Development, Representative Seismic Hazard Estimation and Rock Design Spectrum for Himalayan Region. In: Sitharam, T.G., Jakka, R.S., Kolathayar, S. (eds) Advances in Earthquake Geotechnics. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-19-3330-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3330-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3329-5

  • Online ISBN: 978-981-19-3330-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics