Skip to main content

Industrial Applications of Biodiversity Potentials in Africa

  • Chapter
  • First Online:
Biodiversity in Africa: Potentials, Threats and Conservation

Abstract

Biodiversity is fundamental to development, for improving food security, conservation, industrialization, and ecosystem services in Africa. Biodiversity’s contributions to development are usually effective and reliable by the existence and conservation of a range of different species and genetically diverse populations within species. Africa’s potential biodiversity and ecosystem service are huge, combined with the vast indigenous and local knowledge is sufficient to sustainably develop the region. The food, water, energy, health, and secure livelihood needs available in the rural areas directly satisfy the needs of over 62% of the population. Bioprospecting refers to the industrial exploration and application of these biodiversity potentials for social and economic value. Research shows that low percent of species provide basic resources for societal development when compared with the entire species available in Africa. Therefore, there is a need for the application of modern technologies for the industrial exploration of unidentified and enormous species for the benefit of humanity. In this chapter, the declination of biodiversity in Africa concerning Sustainable Development Goals (SDGs) will be discussed. Also, the biodiversity potentials and its industrial exploration and application will be expounded. And the benefits of industrial application of biodiversity potentials in Africa will be captured in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Africare, Oxfam America, WWF-ICRISAT Project (2010) More rice for people, more water for the planet. WWF-ICRISAT Project, Hyderabad, India. Available at: http://www.sri-india.net/documents/More_Water_For_The_Planet.pdf

  • Ahmed N (2009) Sustainable livelihoods approach the development of fish farming in rural Bangladesh. J Int Farm Manag 4(4):18

    Google Scholar 

  • Altieri MA (1987) Agroecology: the scientific basis of alternative agriculture. Westview Press, Boulder, CO

    Google Scholar 

  • Amilhat E (2006) Fisheries ecology of rice farming landscapes: self-recruiting species in farmer managed aquatic systems. A thesis submitted for the degree of Doctor of Philosophy and Diploma of Imperial College in the Faculty of Science of the University of London. Biology Division, Imperial College of Science, Technology, and Medicine, London

    Google Scholar 

  • Arrieta JM, Arnaud-Haond S, Duarte CM (2010) What lies underneath: conserving the oceans’ genetic resources. Proc Natl Acad Sci 107:18318–18324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baer R, Heinimann A, Ehrensperger A (2017) Assessing the potential supply of biomass cooking fuels in Kilimanjaro region using land-use units and spatial Bayesian networks. Energy Sustain Dev 40:112–125. https://doi.org/10.1016/j.esd.2017.05.007

    Article  Google Scholar 

  • Bailey F (2001) Bioprospecting: discoveries changing the future. The Parliament of the Commonwealth of Australia, Government Publishing, Canberra

    Google Scholar 

  • Balmford A, Green RE, Scharlemann JP (2005) Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob Chang Biol 11:1594–1605. https://doi.org/10.1111/j.1365-2486.2005.001035.x

    Article  Google Scholar 

  • Beattie AJ, Ehrlich PR (2004) Wild solutions: how biodiversity is money in the bank, 2nd edn. Yale University Press, New Haven

    Google Scholar 

  • Beattie AJ, Ehrlich PR (2014) Industries depend on biodiversity too. Nature 509:563. https://doi.org/10.1038/509563d

    Article  PubMed  Google Scholar 

  • Beattie A, Barthlott W, Ten-Kate K, Elisabetsky E, Farrel R, Kheng Chua T et al (2005) New products and industries from biodiversity. In: Ecosystems and human well-being: current state and trends: findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment. Island Press, pp 271–296

    Google Scholar 

  • Bonn C (2020) Restore our future. Impact and potential of forest landscape restoration. IUCN, Gland Switzerland. https://www.bonnchallenge.org/sites/default/files/resources/files/%5Bnode%3Anid%5D/Bonn%20Challenge%20Report.pdf

  • Boyle TP (1987) New approaches to monitoring aquatic systems. American Society for Testing Materials Publication, Philadelphia, PA

    Book  Google Scholar 

  • Burdon JJ, Jarosz AM (1990) Disease in mixed cultivars, composites, and natural plant populations: some epidemiological and evolutionary consequences. In: Brown HD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates Inc., pp 215–228

    Google Scholar 

  • Caldeira MC, Ryel RR, Lawton JH, Pereira JS (2001) Mechanisms of positive biodiversity– production relationships: insights provided by D13c analysis in experimental Mediterranean grassland plots. Ecol Lett 4:439–443

    Article  Google Scholar 

  • Carvalho de Faccio PC, Anghinoni I, de Moraes A, Damacena de Souza E, Sulc RM, Reisdorfer Lang C et al (2010) Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr Cycl Agroecosyst 88(2):259–273

    Article  Google Scholar 

  • CBD (2018) Mainstreaming of biodiversity into the energy and mining sector. Secretariat of the Convention on Biological Diversity, Montreal. https://www.cbd.int/doc/c/278a/e222/7deeb28863d046c875885315/sbi-02–04-add3-en.pdf

  • Ceccarelli S (1996) Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. The International Center for Agricultural Research in the Dry Areas (ICARDA). Aleppo, Syria. (mimeo)

    Google Scholar 

  • Chapman T (2004) The leading edge. Nature 430:109–115

    Article  PubMed  CAS  Google Scholar 

  • Craig CL (2003) Spider webs and silk. Oxford University Press, Oxford

    Google Scholar 

  • Crawford RL, Crawford DL (1998) Bioremediation: principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • De Silva SS, Davy FB (2010) Success stories in Asian aquaculture. Springer

    Book  Google Scholar 

  • Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514

    Article  CAS  PubMed  Google Scholar 

  • Derpsch R, Friedrich T (2009) Global overview of conservation agriculture adoption. Invited paper, 4th world congress on conservation agriculture: innovations for improving efficiency, equity, and environment, 4–7 February. Indian Council for Agricultural Research, New Delhi, India. Available at: http://www.fao.org/ag/ca

  • Dewan S, Chowdhury MTH, Mondal S, Das BC (2003) Monoculture of Amblypharyngodon mola and Osteobrama cotio cotio in rice fields and their polyculture with Barbodes gonionotus and Cyprinus carpio. In: Wahab A, Thilsted SH, Hoq E (eds) Small indigenous species of fish in Bangladesh: culture potentials for improved nutrition and livelihood. Bangladesh Agricultural University, Mymensingh

    Google Scholar 

  • Díaz S, Settele J, Brondízio ES (2019) Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366:eaax3100. https://doi.org/10.1126/science.aax3100

    Article  CAS  PubMed  Google Scholar 

  • Díaz S, Zafra-Calvo N, Purvis A (2020) Set ambitious goals for biodiversity and sustainability. Science 370:411–413. https://doi.org/10.1126/science.abe1530

    Article  PubMed  Google Scholar 

  • Eisner T (2003) For the love of insects. Belknap Harvard, Cambridge, MA

    Google Scholar 

  • Eisner T, Meinwald J (1990) The goteborg resolution. Chemoecology 1:38

    Google Scholar 

  • Emogine M, Maria MM, Toi JT (2020) Achieving sustainability and biodiversity conservation in agriculture: importance, challenges and prospects. Eur J Sustain Develop 9(3):616–625

    Article  Google Scholar 

  • Entz MH, Bellotti WD, Powell JM, Angadi SV, Chen W, Ominski KH et al (2005) Evolution of integrated crop-livestock production systems. In: McGilloway DA (ed) Grassland: a global resource. Wageningen Academic Publishers, Wageningen, pp 137–148

    Google Scholar 

  • FAO (2009) Contributions of smallholder farmers and pastoralists to the development, use, and conservation of animal genetic resources. Commission on Genetic Resources for Food and Agriculture, Working Group Animal Genetic Resources, 5/09/Inf.4. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2010) Second report on the state of the world’s plant genetic resources for food and agriculture

    Google Scholar 

  • FAO (2020) FAO yearbook. Fishery and aquaculture statistics 2018/FAO annuaire. Statistiques des pêches et de l’aquaculture 2018/FAO anuario. Estadísticas de pescay acuicultura 2018, Rome/Roma. https://doi.org/10.4060/cb1213t

  • Gurr GM, Wratten SD, Altieri MA (2004) Genetic engineering and ecological engineering: a clash of paradigms or scope for synergy? In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: advances in habitat manipulation for arthropods. CSIRO Publishing

    Chapter  Google Scholar 

  • Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123:261–270

    Article  Google Scholar 

  • Hall SJG (2004) Ecological adaptation of breeds. In: Hall J (ed) Livestock biodiversity. Blackwell Science, Oxford, pp 45–71

    Chapter  Google Scholar 

  • Halwart M (1998) Trends in rice-fish farming. The FAO Aquaculture Newsletter, April 1998, No 18. ISSN 1020-3443

    Google Scholar 

  • Henkel T, Brunne RM, Muller H, Reichel F (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed 38:643–647

    Article  CAS  Google Scholar 

  • Hoffmann I (2003) Spatial distribution of cattle herds as a response to natural and social environments. A case study from the Zamfara Reserve, Northwest Nigeria. Nomadic Peoples 6:6–23

    Google Scholar 

  • IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat

    Google Scholar 

  • Jack DB (1997) One hundred years of aspirin. Lancet 350:437–445

    Article  CAS  PubMed  Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability, and uptake. Int J Agric Sustain 7(4):292–320

    Article  Google Scholar 

  • Kirschenmann FL (2007) Potential for a new generation of biodiversity in agro-ecosystems of the future. Agron J 99:373376

    Article  Google Scholar 

  • Kliewer L, Casaccia J, Vallejos F (1998) Viabilidad da Reducão do Uso de Herbicidas e Custos no Controle de Plantas Daninhas nas Culturas de Trigo e Soja no Sistema de Plantio Directo, através do Emprego de Adubos Verdes de Curto Periodo. Resumo de Palestras: I Seminario Nacional Sobre Manejo e Controle de Plantas Daninhas em Plantio Direto, 10–12 August 1998, RS. Editora Aldeia Norte, Passo Fundo, pp 120–123

    Google Scholar 

  • Kluthcouski J, Stone LF, Aidar H (2003) Integração Lavoura-pecuária. Embrapa-CNPAF, EMBRAPA, p 569

    Google Scholar 

  • Landers JN (ed) (2007) Sustainable agriculture and policy considerations. In: Tropical crop livestock systems in conservation agriculture – the Brazilian experience. Food and Agriculture Organization of the United Nations, Rome, pp 75–85

    Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, Van-Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated striga management. Field Crop Res 91(1):51–61

    Article  Google Scholar 

  • Li C, He X, Zhu S, Zhou H, Wang Y, Li Y et al (2009) Crop diversity for yield increase. PLoS One 4(11):e8049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A et al (2002) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  Google Scholar 

  • Machado PLO, Silva CA (2001) Soil management under no-tillage systems in the tropics with special reference to Brazil. Nutr Cycl Agroecosyst 61:119–130

    Article  Google Scholar 

  • Mader A, Scheyvens H (2020) Biodiversity and industry. IGES: Geo-6 for industry in Asia-Pacific, pp 46–54

    Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Malaisse F (1997) Se Nourir en Foret Claire Africaine. Les Presses Agronomique de Gembloux, Gembloux

    Google Scholar 

  • Mann S (2001) Biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Mann S, Webb J, Williams RJ (1989) Biomineralization: chemical and biochemical perspectives. VCH Verlagsgesselschaft, Weinheim

    Google Scholar 

  • Marshner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • McGeer A, Low DE (2003) Is resistance futile. Nat Med 9:390–392

    Article  CAS  PubMed  Google Scholar 

  • Moss D, Harbison SA, Saul DJ (2003) An easily automated, closed tube forensic DNA extraction procedure using a thermostable proteinase. Int J Legal Med 117:340–349

    Article  CAS  PubMed  Google Scholar 

  • Mualem R, Chosniak I, Shkolnik A (1990) Environmental heat load, bioenergetics, and water economy in two breeds of goats. World Rev Anim Prod 15(3):92–95

    Google Scholar 

  • Mueller JG, Resnick SM, Shelton ME, Pritchard PH (1992) Effect of inoculation on the biodegradation of weathered Pridhoe Bay crude oil. J Ind Microbiol 10:95–102

    Article  Google Scholar 

  • Munro MHG, Blunt EJ, Dumdei SJH, Hickford RE, Lill SL, Battershill CN et al (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25

    Article  CAS  PubMed  Google Scholar 

  • Myers N (1983) A wealth of wild species: storehouse for human welfare. Westview Press, Boulder, CO

    Google Scholar 

  • Naeem S, Chazdon R, Duffy JE (2016) Biodiversity and human well-being: an essential link for sustainable development. Proc R Soc B 283:20162091. https://doi.org/10.1098/rspb.2016.2091

    Article  PubMed  PubMed Central  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J et al (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Obrecht A, Spehn EM, Pham-Truffer M, Payne D (2021) Achieving the SDGs with biodiversity. Swiss Academies Factsheets 16(1)

    Google Scholar 

  • OECD (2019) Biodiversity: finance and the economic and business case for action. Report prepared for the G7 environment ministers’ meeting, pp 5–6

    Google Scholar 

  • Ortholand JY, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8:271–280

    Article  CAS  PubMed  Google Scholar 

  • PAR (2010) The use of agrobiodiversity by indigenous peoples and rural communities in adapting to climate change. A discussion paper prepared by the platform for agrobiodiversity research. Available at: http://www.agrobiodiversityplatform.org/blog/wpcontent/uploads/2010/05/PARSynthesis_low_FINAL.pdf

  • Pham-Truffert M, Metz F, Fischer M (2020) Interactions among sustainable development goals: knowledge for identifying multipliers and virtuous cycles. Sustain Dev 28:1236–1250. https://doi.org/10.1002/sd.2073

    Article  Google Scholar 

  • Popkin BM (2002) An overview of the nutrition transition and its health implications: the Bellagio meeting. Public Health Nutr 5:93–103

    Article  PubMed  Google Scholar 

  • Pretty JN (1997) The sustainable intensification of agriculture. Nat Res Forum 21:247–256. https://doi.org/10.1111/j.1477-8947.1997.tb00699.x

    Article  Google Scholar 

  • Pretty J, Hineb R (2000) The promising spread of sustainable agriculture in Asia. Nat Res Forum 24:107–121

    Article  Google Scholar 

  • Rastelli E, Petani B, Corinaldesi C (2020) A high biodiversity mitigates the impact of ocean acidification on hard-bottom ecosystems. Sci Rep 10:2948. https://doi.org/10.1038/s41598-020-59886-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat US, Agarwal NK (2015) Biodiversity: concept, threats and conservation. Environ Conserv J 16(3):19–28

    Article  Google Scholar 

  • Richards P, Ruivenkamp G (1997) Seeds and survival: crop genetic resources in war and reconstruction in Africa. International Plant Genetic Resources Institute, Rome, p 61

    Google Scholar 

  • Robbins CS, Sauer JR, Peterjohn BG (1993) Population trends and management opportunities for neotropical migrants. In: Finch DM, Stangel PW (eds). Status and management of neotropical migratory birds. general technical report. USDA Forest Service, Rocky Mountain Forest, and Range Experiment Station, Fort Collins, CO

    Google Scholar 

  • Rodale Institute (1999) 100-year drought is no match for organic soybeans. Rodale Institute, Kutztown, PA. Available at: http://www.rodaleinstitute.org/19991109/fst

    Google Scholar 

  • Rolf M, Nicole A, Jonathan B, Boreyko C, Ashok KG, Cindy G et al (2018) Biodiversifying bioinspiration. Bioinspir Biomim 13:053001

    Article  Google Scholar 

  • Roos N, Wahab A, Hossain MAR, Thilsted SH (2007) Linking human nutrition and fisheries: incorporating micronutrient-dense, small indigenous fish species in carp polyculture production in Bangladesh. Food Nutr Bull 28(2):S280–S293

    Article  PubMed  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macro-invertebrates. Chapman and Hall, London

    Google Scholar 

  • Saha D (2003) Conserving fish biodiversity in Sundarban villages of India. In: Conservation and sustainable use of agricultural biodiversity. CIP-UPWARD in collaboration with GTZ, IDRC, IPGRI, and SERVICE, pp 131–157

    Google Scholar 

  • Sherr S, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Philos Trans R Soc Lond Ser B Biol Sci 363(1491):477–494

    Article  Google Scholar 

  • Singh RP, William HM, Huerta-Espino J, Rosewarne G (2004) Wheat rust in Asia: meeting the challenges with old and new technologies. new directions for a diverse planet. IN: Proceedings of the 4th international crop science congress, Brisbane, 26 Sept–1 Oct 2004. www.cropscience.org.au

  • Sorrenson WJ, Montoya LJ (1984) Implicacões Econõmicas da Erosão do Solo e de Prátcas Conservacionistas no Paraná, Brasil, IAPAR, Londrina. GTZ, Eschborn

    Google Scholar 

  • Susilo FX, Neutel AM, Van Noordwijk M, Hairiah K, Brown G, Swift MJ (2004) Soil biodiversity and food webs. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below ground interactions in tropical agroecosystems. CAB International, Wallingford, pp 285–302

    Google Scholar 

  • Ten Kate K, Laird SA (1999) The commercial use of biodiversity: access to genetic resources and benefit-sharing. Royal Botanic Gardens, Kew and European Communities, Earths can Publications Ltd, London

    Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • UNEP-CBD (2011) Sustainable use of biodiversity. Convention on Biological Diversity. Factsheet. https://www.cbd.int/undb/media/factsheets/undb-factsheet-sustainable-en.pdf

  • UNEP-WCMC (2016) The state of biodiversity in Africa: a mid-term review of progress towards the Aichi biodiversity targets. UNEP-WCMC, Cambridge

    Google Scholar 

  • United Nations (2015) Transforming our world: the 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

  • United Nations (2019) The sustainable development goals report 2019. https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf

  • Vandermeer J, Lawrence D, Symstad A, Hobbie S (2002) Effects of biodiversity on ecosystem functioning in managed ecosystems. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Oxford University Press, Oxford, pp 157–168

    Google Scholar 

  • Wessjohann LA (2000) Synthesis of natural-product-based compound libraries. Curr Opin Chem Biol 4:303–330

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1992) The diversity of life. Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Zeddies J, Schaab RP, Neuenschwander P, Herren HR (2001) Economics of biological control of cassava mealybug in Africa. Agric Econ 24(2):209–219

    Article  Google Scholar 

  • Zhu YY, Chen H, Fan J, Wang Y, Li Y, Chen J et al (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwafemi Emmanuel Ogundahunsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogundahunsi, O.E., Akpan, G.E., Ayorinde, T.A., Babafemi, O.P., Ayodele, A.A. (2022). Industrial Applications of Biodiversity Potentials in Africa. In: Chibueze Izah, S. (eds) Biodiversity in Africa: Potentials, Threats and Conservation. Sustainable Development and Biodiversity, vol 29. Springer, Singapore. https://doi.org/10.1007/978-981-19-3326-4_2

Download citation

Publish with us

Policies and ethics