Skip to main content

A Comprehensive Comparative Study Between LBP and LBP Variants in Face Recognition

  • 323 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 914)

Abstract

LBP is renowned as one of the most powerful local descriptors for texture description. The merits of LBP are monotonic gray invariance property and less complex algorithm. Therefore, LBP was deployed successfully in diverse range of applications. The success of LBP has inspired researchers to develop new LBP variants for diverse range of applications. These LBP variants achieve good results with respect to the application they were developed. After observing merits of LBP and its variants, it is found that there is need for comprehensive comparative study among these LBP-based descriptors and chose best among all descriptors. With this note, the proposed work provides comprehensive comparative study between 15 LBP-based descriptors which includes LBP and 14 LBP variants. Apart from LBP, the other 14 are HELBP, VELBP, NI-LBP, AD-LBP, DLBP, tLBP, RD-LBP, MRELBP-NI, MB-ZZLBP, MBP,6 × 6 MB-LBP, OC-LBP, LDBP and LNDBP. For all descriptors, the features are extracted globally, and then, PCA is used for feature compaction. Ultimately classification is performed by RBF, the SVMs-based method. Experiments performed on ORL face dataset confirm that among all 15, it is MB-ZZLBP which secures superior accuracy than other 14 descriptors. MB-ZZLBP also out classes numerous methods from literature.

Keywords

  • Feature extraction
  • Local descriptors
  • Global descriptors
  • Classifier
  • Grayscale images

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-19-2980-9_9
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-981-19-2980-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig.4

References

  1. Chen, T., Gao, T., Li, S., Zhang, X., Cao, J., Yao, D., Li, Y.: A novel face recognition method based on fusion of LBP and HOG. IET Image Process. (2021)

    Google Scholar 

  2. Gupta, S., Thakur, K., Kumar, M.: 2D-human face recognition using SIFT & SURF descriptors of face’s feature regions. Vis. Comp. 37 (2021)

    Google Scholar 

  3. Li, C., Huang, Y., Huang,W., Qin, F.: Learning features from covariance matrix of gabor wavelet for face recognition under adverse conditions. Pattern Recogn. 119 (2021)

    Google Scholar 

  4. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    CrossRef  Google Scholar 

  5. Nguyen, H.T., Caplier, A.: Elliptical LBPs for face recognition. In: ACCV (2012)

    Google Scholar 

  6. Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012)

    CrossRef  Google Scholar 

  7. Kaplan, K., Kaya, Y., Kuncan, M., Ertunc, H.M.: Brain tumor classification using modified LBP feature extraction methods. Med. Hypotheses 139, 1–12 (2020)

    CrossRef  Google Scholar 

  8. Trefny, J., Matas, J.: Extended set of LBPs for rapid object detection. In: CVWW, pp. 37–43 (2010)

    Google Scholar 

  9. Liu, L., Lao, S., Fieguth, P.W., Guo, Y., Wang, X., Pietikainen, M.: Median robust extended LBP for texture classification. IEEE Trans. Image Process. 25(3), 1368–1381 (2016)

    CrossRef  MathSciNet  Google Scholar 

  10. Karanwal, S., Diwakar, M.: MB-ZZLBP: multiscale block zig zag local binary pattern for face recognition. In: MARC, pp. 613–622 (2021)

    Google Scholar 

  11. Hafiane, A., Seetharaman, G., Zavidovique, B.: MBPs for textures classification. In: ICIAR, pp. 387–398 (2007)

    Google Scholar 

  12. Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block LBPs for face recognition. In: ICB, pp. 828–837 (2007)

    Google Scholar 

  13. Zhu, C., Bichot, C.E., Chen, L.: Image region description using orthogonal combination of LBP enhanced with color information. Pattern Recogn. 46(7), 1949–1963 (2013)

    CrossRef  Google Scholar 

  14. Karanwal, S., Roka, S.: A robust fused descriptor under unconstrained conditions. In: SUSCOM (2021)

    Google Scholar 

  15. Xu, K., Fan, B., Yang, H., Hu, L., Shen, W.: Locally weighted PCA-based multimode modeling for complex distributed parameter systems. IEEE Trans. Cybern. 1–11 (2021)

    Google Scholar 

  16. Junior, P.R.M., Boult, T.E., Wainer, J., Rocha, A.: Open-set SVMs. IEEE Trans. Syst. Man Cybern. Syst. 1–14 (2021)

    Google Scholar 

  17. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

  18. Saidi, I.A., Rziza, M., Debayle, J.: A novel texture descriptor: circular parts LBP. Image Anal. Sterol. 40(2), 105–114 (2021)

    CrossRef  Google Scholar 

  19. Kar, C., Banerjee, S.: Tropical cyclones classification from satellite images using blocked LBP and histogram analysis. In: SCTA, pp. 399–407 (2021)

    Google Scholar 

  20. Rasool, M., Kaur, A.: A novel rotation invariant descriptor for texture classification with LBPs. In: SCSP, pp. 385–396 (2021)

    Google Scholar 

  21. Vu, H.N., Nguyen, M.H., Pham, C.: Masked face recognition with convolutional neural networks and local binary patterns. Appl. Intell. (2021).

    Google Scholar 

  22. Kartheek, M.N., Prasad, M.V.N.K., Bhukya, R.:Radial mesh pattern: a handcrafted feature descriptor for facial expression recognition. J. Amb. Intell. Human. Comput. (2021)

    Google Scholar 

  23. Karanwal, S.: Discriminative color descriptor by the fusion of 3 novel color descriptors. Optik 244 (2021)

    Google Scholar 

  24. Kas, M., Khadiri, I.E., Merabet, Y.E., Ruichek, Y., Messoussi, R.: Multi level directional cross binary patterns: New handcrafted descriptor for SVM-based texture classification. Eng. Appl. Artif. Intell. 94 (2020)

    Google Scholar 

  25. Karanwal, S.: Graph based structure binary pattern for face analysis.Optik 241 (2021)

    Google Scholar 

  26. Ghosh, M., et al.: Robust face recognition by fusing fuzzy type 2 induced multiple facial fused image. In: IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), pp. 1–6 (2021). https://doi.org/10.1109/GUCON50781.2021.9573871

  27. Ding, M., Song, X., Yu, B.: An inexact proximal DC algorithm with sieving strategy for rank constrained least squares semi definite programming. arXiv:2105.12389 (2021)

  28. Dinariyah, I.: Alamsyah: accuracy enhancement in face recognition using 1D-PCA & 2D-PCA based on multilevel reverse-biorthogonal wavelet transform with KNN classifier. J. Phys. Conf. Ser. 1918, 1–5 (2021)

    CrossRef  Google Scholar 

  29. Bodapati, S., et al.: Comparison and analysis of RNN-LSTMs and CNNs for social reviews classification. In: Bansal, J.C., Fung, L.C.C., Simic, M., Ghosh, A. (eds.) Advances in Applications of Data-Driven Computing. Advances in Intelligent Systems and Computing, vol. 1319. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6919-1_4

  30. Karanwal, S.: A comparative study of 14 state of art descriptors for face recognition. Multimedia Tools Appl. 80(8), 12195–12234 (2021)

    CrossRef  Google Scholar 

  31. Wang, Y., Tan, Y.P., Tan, Y.Y., Chen, H., Zhou, C., Li, L.: Generalized and discriminative collaborative representation for multiclass classification. IEEE Trans. Cybern. 1–12 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar Karanwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Karanwal, S. (2022). A Comprehensive Comparative Study Between LBP and LBP Variants in Face Recognition. In: Shaw, R.N., Das, S., Piuri, V., Bianchini, M. (eds) Advanced Computing and Intelligent Technologies. Lecture Notes in Electrical Engineering, vol 914. Springer, Singapore. https://doi.org/10.1007/978-981-19-2980-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2980-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2979-3

  • Online ISBN: 978-981-19-2980-9

  • eBook Packages: Computer ScienceComputer Science (R0)