Skip to main content

Prognosis of Parkinson’s Malady—A Multimodal Approach

  • 322 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 914)

Abstract

The increment in elderliness is directly proportional to the enhancement in Parkinson's disease patients. Lamentably, the authentic and prompt prognosis of PD plays a big challenge in emergent nations on the grounds of lack of resources and alertness. Moreover, the symptoms of PD patients are not identical nor do they all occur at the same stage of the disease. Thus, in our study, we have suggested a joint prototype by analyzing and conducting tests of three main symptoms, namely tremor analysis, dysphonia analysis and writing analysis test of PD occurring in the initiatory phase of the disease to predict the disease in the early stages and control it accordingly. This model can also prove to be a boon to patients living in areas, where qualified neurologists are not immediately accessible.

Keywords

  • Parkinson’s disease
  • Tremor
  • Dysphonia
  • Handwriting analysis
  • Machine learning
  • Telemonitoring

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-19-2980-9_2
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-981-19-2980-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Elbaz, A., Bower, J.H., Peterson, B.J., Maraganore, D.M., McDonnell, S.K., Ahlskog, J.E., Schaid, D.J., Rocca, W.A.: Survival study of Parkinson disease in Olmsted County. Minnesota. Arch Neurol. 60, 91–96 (2003)

    Google Scholar 

  2. Tanner, C.M., Ross, G.W., Jewell, S.A.: Occupation and risk of Parkinsonism: a multicenter Claas Ahlrichs aeal, Parkinson's disease motor symptoms in machine learning: a review. Health Inf. Int. J. (HIIJ) 2(4), (2013)

    Google Scholar 

  3. Surathi, P., et al.: Research in Parkinson's disease in India: a review. Ann Indian Acad. Neurol. 19(1), 9–20 (2016). https://doi.org/10.4103/0972-2327.167713

  4. Symptoms of Parkinson’s Disease and Movement disorder. https://www.froedtert.com/sites/default/files/image/2021-04/parkinsons-disease-symptoms-infographic-1200x628.jpg

  5. Triarhou, L.C.: Dopamine and Parkinson’s disease. Madame Curie Bioscience Database (2000–2013)

    Google Scholar 

  6. Ramaniand, R.G., Sivagami, G.: Parkinson disease classification using data mining algorithms. Int. J. Comput. Appl. 32(9), 17–22 (2011)

    Google Scholar 

  7. Hillerkuss, D., Winter, M., Teschke, M., Marculescu, A., Li, J., Sigurdsson, G., Worms, K., benEzra, S., Narkiss, N., Freude, W., Leuthold, J.: Simple all-optical FFT scheme enabling Tbit/sreal-time signal processing. Opt. Express 18(9), 9324 (2010). https://doi.org/10.1364/OE.18.009324

  8. Palimkar, P., et al.: Machine learning technique to prognosis diabetes disease: random forest classifier approach. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. Lecture Notes in Networks and Systems, vol. 218. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_19

  9. Vander Plas, J.: Python data science handbook: essential tools for working with data. O'Reilly Media, Inc. (2016)

    Google Scholar 

  10. Chakraborty, A., et al.: A comparative study of myocardial infarction detection from ECG data using machine learning. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. Lecture Notes in Networks and Systems, vol. 218. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_21

  11. Ho, A., et al.: Speech impairment in a large sample of patients with Parkinson’s disease. Behav. Neurol. 11, 131–137 (1998)

    CrossRef  Google Scholar 

  12. Little, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed Eng. 56(4), 1015–1022 (2009)

    Google Scholar 

  13. Sukhanov, V.A., Ionov, I.D., Piruzyan, L.A.: Neurodegenerative disorders: the role of genetic factors in their origin and the efficiency of treatment. In: Proceedings of the Human Physiology US National Library of Medicine National Institutes of Health, vol. 31, pp. 472–482 (2005)

    Google Scholar 

  14. Avci, D., Dogantekin, A., et al.: An expert diagnosis system for Parkinson disease based on genetic algorithm-wavelet kernel- extreme learning machine. Hindawi Publishing Corporation Parkinson’s Disease, Vol. 2016, 9p (2016). Article ID5264743. https://doi.org/10.1155/2016/52647

  15. Eskidere, O., et al.: AComparisonofregressionmethodsforremotetrackingofParkinson’sdiseaseprogression. Experts Syst. Appl. 39, 5523–5528 (2012)

    CrossRef  Google Scholar 

  16. Aghanavesi, S., et al.: Verification of a method for measuring Parkinson’s disease related temporal irregularity in spiral drawings. Sensors 17(10), E2341 (2017). https://doi.org/10.3390/s17102341

  17. Wtal, Drotar, P.: Decision support framework for Parkinson’s disease based on novel hand writing marker. IEEE Trans. Neural Syst. Rehabil. Eng. 23(3), 508–516 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanvi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sharma, S., Singh, P. (2022). Prognosis of Parkinson’s Malady—A Multimodal Approach. In: Shaw, R.N., Das, S., Piuri, V., Bianchini, M. (eds) Advanced Computing and Intelligent Technologies. Lecture Notes in Electrical Engineering, vol 914. Springer, Singapore. https://doi.org/10.1007/978-981-19-2980-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2980-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2979-3

  • Online ISBN: 978-981-19-2980-9

  • eBook Packages: Computer ScienceComputer Science (R0)