Skip to main content

Textual Inference Identification in the Malayalam Language Using Convolutional Neural Network

  • 323 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 914)


Natural language inference (NLI), earlier known as textual entailment, is an important task related to the semantic matching of natural language sentences. Systems and methodologies that can identify inferences are helpful for most language processing tasks like document summarization and question answering systems. There is active research in NLI for English and other foreign languages. Considering Indian languages like Malayalam, there are very few works done. Here, we focus on identifying inferences in the Malayalam language using one-dimensional convolutional neural network (CNN), multichannel CNN, and CNN architecture on matching sentences over interaction space with fastText-based embeddings. This work is an attempt to apply convolutional neural networks for NLI in Malayalam without any hand-engineered features. This approach contributes with a recall of 0.66% for binary and 0.51% for multiclass classification. This work also contributes to the language resources community.


  • Malayalam
  • Natural language inference
  • Text entailment
  • Deep learning
  • CNN

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-19-2980-9_20
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-981-19-2980-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Anand Kumar, M., Singh, S., Kavirajan, B., Soman, K.: DPIL@FIRE 2016: overview of shared task on detecting paraphrases in Indian languages (DPIL). In: CEUR Workshop Proceedings, vol. 1737, pp. 233–238 (2016)

    Google Scholar 

  2. Artetxe, M., Schwenk, H.: Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. Trans. Assoc. Comput. Linguist. 7, 597–610 (2019)

    CrossRef  Google Scholar 

  3. Bos, J., Zanzotto, F.M., Pennacchiotti, M.: Textual entailment at EVALITA 2009. Proc. EVALITA 2009(6.4), 2 (2009)

    Google Scholar 

  4. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326 (2015)

  5. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364 (2017)

  6. Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman, S.R., Schwenk, H., Stoyanov, V.: XNLI: evaluating cross-lingual sentence representations. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2018)

    Google Scholar 

  7. Dagan, I., Glickman, O., Magnini, B.: The pascal recognising textual entailment challenge. In: Machine Learning Challenges Workshop, pp. 177–190. Springer (2005)

    Google Scholar 

  8. Das, A., Pal, D.R.: Exploring the partial textual entailment problem for Bengali news texts. Res. Comput. Sci. 86, 43–52 (2014)

    CrossRef  Google Scholar 

  9. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018).

  10. Ghuge, S., Bhattacharya, A.: Survey in textual entailment (2014)

    Google Scholar 

  11. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018) (2018)

    Google Scholar 

  12. Guo, M., Zhang, Y., Zhao, D., Liu, T.: Generating textual entailment using residual LSTMs. In: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, pp. 263–272. Springer (2017)

    Google Scholar 

  13. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for matching natural language sentences. In: Advances in Neural Information Processing Systems, pp. 2042–2050 (2014)

    Google Scholar 

  14. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)

    Google Scholar 

  15. Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., Zamparelli, R., et al.: A sick cure for the evaluation of compositional distributional semantic models. In: LREC, pp. 216–223 (2014)

    Google Scholar 

  16. Mou, L., Men, R., Li, G., Xu, Y., Zhang, L., Yan, R., Jin, Z.: Natural language inference by tree-based convolution and heuristic matching. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol. 2: Short Papers), pp. 130–136 (2016)

    Google Scholar 

  17. Pakray, P., Bandyopadhyay, S., Gelbukh, A.F.: Binary-class and multi-class based textual entailment system. In: NTCIR (2013)

    Google Scholar 

  18. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3973–3983 (2019)

    Google Scholar 

  19. Renjit, S., Idicula, S.: Natural language inference for Malayalam language using language agnostic sentence representation. PeerJ Comput. Sci. 7, e508 (2021)

    CrossRef  Google Scholar 

  20. Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kociskỳ, T., Blunsom, P.: Reasoning about entailment with neural attention. Corr abs/1509.06664 (2015)

    Google Scholar 

  21. Sarkar, K.: Ks_ju@ dpil-fire2016: detecting paraphrases in Indian languages using multinomial logistic regression model. arXiv preprint arXiv:1612.08171 (2016)

  22. Son, N.T., Phan, V.A., Nguyen, L.M.: Recognizing entailments in legal texts using sentence encoding-based and decomposable attention models. In: COLIEE@ ICAIL, pp. 31–42 (2017)

    Google Scholar 

  23. Sun, C., Liu, Y., Liu, B., Lin, L., et al.: Recognizing text entailment via bidirectional LSTM model with inner-attention. In: International Conference on Intelligent Computing, pp. 448–457. Springer (2017)

    Google Scholar 

  24. Williams, A., Nangia, N., Bowman, S.: A broad-coverage challenge corpus for sentence understanding through inference. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics (2018).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sara Renjit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Renjit, S., Idicula, S.M. (2022). Textual Inference Identification in the Malayalam Language Using Convolutional Neural Network. In: Shaw, R.N., Das, S., Piuri, V., Bianchini, M. (eds) Advanced Computing and Intelligent Technologies. Lecture Notes in Electrical Engineering, vol 914. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2979-3

  • Online ISBN: 978-981-19-2980-9

  • eBook Packages: Computer ScienceComputer Science (R0)