Skip to main content

A Deep Learning-Based Approach with Semi-supervised Level Set Loss for Infant Brain MRI Segmentation

  • Conference paper
  • First Online:
Pervasive Computing and Social Networking

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 475))

  • 482 Accesses

Abstract

Nowadays, numerous deep learning techniques for segmenting medical images have been proposed, with excellent outcomes and the valuable success of machine learning. However, most models use supervised methods while others use unsupervised methods, with less effective outcomes than supervised learning methods. Therefore, this paper introduces a novel level set loss function for unsupervised tasks and incorporates it with the Active Contour loss for supervised tasks. Besides, since previously introduced deep learning models generate less accurate results due to the intensity inhomogeneity issues and the often presence of low-intensity contrast tissues in infant brain segmentation, we propose a new convolutional neural network model to alleviate this problem. Instead of binary segmentation, our proposed loss entitles our model to segment multiple classes with promising outcomes. The proposed technique is utilized to segment neonatal brain magnetic resonance images into four non-overlap regions. The iSeg-2017 challenge, which offers a collection of neonatal brain magnetic resonance imagesĀ from different sites, is used to evaluate our proposed process. The experiment demonstrates that our new loss function achieves promising results among the 21 participating teams. This illustrates the effectiveness of our technique in multiclass medical image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jahne B, Haubsecker H (2000) Computer vision and applications: a guide for students and practitioners. Elsevier

    Google ScholarĀ 

  2. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2019) Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856ā€“1867

    ArticleĀ  Google ScholarĀ 

  3. Zhou T, Ruan S, Canu S (2019) A review: deep learning for medical image segmentation using multi-modality fusion. Array 3:100004

    ArticleĀ  Google ScholarĀ 

  4. Bashar A (2019) Survey on evolving deep learning neural network architectures 1(2):73ā€“82

    Google ScholarĀ 

  5. Manoharan JS (2021) Study of variants of extreme learning machine (ELM) brands and its performance measure on classification algorithm 3(2), 83ā€“95

    Google ScholarĀ 

  6. Manoharan S (2020) Early diagnosis of lung cancer with probability of malignancy calculation and automatic segmentation of lung CT scan images 2(4), 175ā€“186 (2020)

    Google ScholarĀ 

  7. Balasubramaniam V (2021) Artificial intelligence algorithm with SVM classification using dermascopic images for melanoma diagnosis 3(1):34ā€“42 (2021)

    Google ScholarĀ 

  8. Pham V-T, Tran T-T, Wang P-C, Lo M-T (2020) Tympanic membrane segmentation in otoscopic images based on fully convolutional network with active contour loss. Signal Image Video Process, 1ā€“9

    Google ScholarĀ 

  9. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234ā€“241

    Google ScholarĀ 

  10. Tran T-T, Tran T-T, Ninh Q-C, Bui M-D, Pham V-T(2020) Segmentation of left ventricle in short-axis MR images based on fully convolutional network and active contour model. In: 5th international conference on green technology and sustainable development, vol 1284, pp 49ā€“59

    Google ScholarĀ 

  11. Koresh HJD, Chacko S, Periyanayagi MJPRL (2021) A modified capsule network algorithm for oct corneal image segmentation 143:104ā€“112

    Google ScholarĀ 

  12. Jadon S (2020) A survey of loss functions for semantic segmentation, arXiv preprint arXiv:2006.14822

  13. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278ā€“2324

    ArticleĀ  Google ScholarĀ 

  14. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097ā€“1105

    Google ScholarĀ 

  15. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770ā€“778

    Google ScholarĀ 

  16. Pham V-T, Tran T-T, Wang P-C, Chen P-Y, Lo M-T (2021) EAR-UNet: a deep learning-based approach for segmentation of tympanic membranes from otoscopic images. Artif Intell Med 115:1ā€“12

    ArticleĀ  Google ScholarĀ 

  17. Zhang W et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108:214ā€“224

    ArticleĀ  Google ScholarĀ 

  18. Moeskops P, Viergever MA, Mendrik AM, De Vries LS, Benders MJ, IÅ”gum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252ā€“1261

    ArticleĀ  Google ScholarĀ 

  19. Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007ā€“2016

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  20. Wang L et al (2014) Segmentation of neonatal brain MR images using patch-driven level sets. Neuroimage 84:141ā€“158

    ArticleĀ  Google ScholarĀ 

  21. Chan TF, Vese LA (2000) Image segmentation using level sets and the piecewise-constant Mumford-Shah model, in Tech. Rep. 0014, Computational Applied Math Group, 2000: Citeseer

    Google ScholarĀ 

  22. Shyu K-K, Pham V-T, Tran T-T, Lee P-L (2012) Global and local fuzzy energy based-active contours for image segmentation. Nonlinear Dyn 67(2), 1559ā€“1578

    Google ScholarĀ 

  23. Tran T-T, Pham V-T, Shyu K-K (2014) Zernike moment and local distribution fitting fuzzy energy-based active contours for image segmentation. SIViP 8(1):11ā€“25

    ArticleĀ  Google ScholarĀ 

  24. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266ā€“277

    ArticleĀ  Google ScholarĀ 

  25. Kim B, Ye JC (2019) Mumfordā€“Shah loss functional for image segmentation with deep learning. IEEE Trans Image Process 29:1856ā€“1866

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  26. Badshah N, Chen K, Ali H, Murtaza G (2012) Coefficient of variation based image selective segmentation model using active contours. East Asian J Appl Math 2(2):150ā€“169

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  27. Trinh M-N, Nguyen N-T, Tran T-T, Pham V-T (2021) A Semi-supervised deep learning-based approach with multiphase active contour loss for left ventricle segmentation from CMR images. In: Proceedings of Third International Conference on Sustainable Computing, 2021: Springer

    Google ScholarĀ 

  28. Wang L et al (2019) Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans Med Imaging 38(9):2219ā€“2230

    ArticleĀ  Google ScholarĀ 

  29. Abadi M et al (2016) Tensorflow: Large-scale machine learning on heterogeneous distributed systems

    Google ScholarĀ 

  30. Harris CR et al (2020) Array programming with NumPy 585(7825):357ā€“362

    Google ScholarĀ 

  31. Ahmed S (1995) A pooling methodology for coefficient of variation. Sankhyā: Indian J Stat Ser B, 57ā€“75

    Google ScholarĀ 

  32. Mora M, Tauber C, Batatia H (2005) Robust level set for heart cavities detection in ultrasound images. In: Computers in cardiology. IEEE, pp 235ā€“238

    Google ScholarĀ 

  33. Schulze MA, Wu QX (1995) Nonlinear edge-preserving smoothing of synthetic aperture radar images. In: Proceedings of the New Zealand image and vision computingā€™95 Workshop, pp 28ā€“29

    Google ScholarĀ 

  34. Qin X, Zhang Z, Huang C, Dehghan M, Zaiane OR, Jagersand M (2020) U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recogn 106:107404

    ArticleĀ  Google ScholarĀ 

  35. Ramachandran P, Zoph B,. Le QV (2017) Searching for activation functions. arXiv preprint arXiv:1710.05941

  36. Woo S, Park J, Lee J-Y, Kweon IS (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3ā€“19

    Google ScholarĀ 

  37. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132ā€“7141

    Google ScholarĀ 

  38. Ghiasi G, Lin T-Y, Le QV (2018) Dropblock: a regularization method for convolutional networks. arXiv preprint arXiv:1810.12890

  39. Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15(1):1ā€“28

    ArticleĀ  Google ScholarĀ 

  40. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, p. 1026ā€“1034

    Google ScholarĀ 

  41. Dozat T (2016) Incorporating nesterov momentum into adam

    Google ScholarĀ 

  42. Wang L et al (2018) Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In: International conference on medical image computing and computer-assisted intervention. Springer, , pp 411ā€“419

    Google ScholarĀ 

  43. Li G et al (2014) Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage 90:266ā€“279

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This research is funded by the Hanoi University of Science and Technology (HUST) under project number T2021-PC-005. Minh-Nhat Trinh was funded by Vingroup JSC and supported by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Institute of Big Data, code VINIF. 2021.ThS.33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi-Thao Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trinh, MN., Pham, VT., Tran, TT. (2023). A Deep Learning-Based Approach with Semi-supervised Level Set Loss for Infant Brain MRI Segmentation. In: Ranganathan, G., Bestak, R., Fernando, X. (eds) Pervasive Computing and Social Networking. Lecture Notes in Networks and Systems, vol 475. Springer, Singapore. https://doi.org/10.1007/978-981-19-2840-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2840-6_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2839-0

  • Online ISBN: 978-981-19-2840-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics