Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 915))

Abstract

Machine learning (ML) is the subcategory of artificial intelligence (AI), which has the capability to imitate human behavior intelligently as per the task performed by the human. In the modern time, any organization implements AI by using ML so that system’s behavior of interchangeably and ambiguously is updated automatically through the experience without any delay. So, current advances in AI have involved ML. The ML starts with data (i.e., any kind of data starting from primary to secondary data). These data are collected and preprocessed to be used as training and testing the ML models being utilized for different applications such as regression, prediction, forecasting, classification, clustering, management, design, optimization, security, IoTs, health care, digitization, automation, control, privacy protection and e-commerce. In this book, the applications AI, ML and its advancement for different applications have been presented into different chapters, including the state-of-the-art and implementation in the various research domains of engineering and science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomar A et al (2020) Machine learning, advances in computing. Renew Energy Commun (Springer, Berlin, LNEE 768:659. https://doi.org/10.1007/978-981-16-2354-7. (ISBN 978-981-16-2354-7)

  2. Iqbal A et al (2020) Renewable power for sustainable growth (Springer, Berlin, LNEE) 723:805. https://doi.org/10.1007/978-981-33-4080-0. (ISBN 978-981-33-4082-4)

  3. Ahmad MW et al (2022) Intelligent data-analytics for power and energy systems (Springer, Berlin, LNEE) 802:641. https://doi.org/10.1007/978-981-16-6081-8. (ISBN 978-981-16-6081-8)

  4. Fatema N et al (2021) Intelligent data-analytics for condition monitoring: smart grid applications, Elsevier, 268 p https://www.sciencedirect.com/book/9780323855105/intelligent-data-analytics-for-condition-monitoring. (ISBN: 978-0-323-85511-2)

  5. Iqbal A et al (2020) Soft computing in condition monitoring and diagnostics of electrical and mechanical systems, 496 p. Springer, Berlin. https://doi.org/10.1007/978-981-15-1532-3. (ISBN 978-981-15-1532-3)

  6. Iqbal A et al (2020) Meta heuristic and evolutionary computation: algorithms and applications, 949 p. Springer, Berlin. https://doi.org/10.1007/978-981-15-7571-6. (ISBN 978-981-15-571-6)

  7. Jafar A et al (2021) AI and machine learning paradigms for health monitoring system: intelligent data analytics, vol 86, p 513. Springer, Berlin, SBD. https://doi.org/10.1007/978-981-33-4412-9. ISBN 978-981-33-4412-9

  8. Srivastava S et al (2019) Applications of artificial intelligence techniques in engineering, SIGMA 2018, vol 1, 698:643. Springer, AISC. https://doi.org/10.1007/978-981-13-1819-1. (ISBN 978-981-13-1818-4)

  9. Srivastava S et al (2019) Applications of artificial intelligence techniques in engineering, SIGMA 2018, vol 2 (Springer, AISC, vol 697, 647 p). https://doi.org/10.1007/978-981-13-1822-1. (ISBN 978-981-13-1821-4)

  10. Malik H, Mishra S (2016) Application of gene expression programming (GEP) in power transformers fault diagnosis using DGA. IEEE Trans Ind Appl 52(6):4556–4565. https://doi.org/10.1109/TIA.2016.2598677

    Article  Google Scholar 

  11. Ahmad MW et al (2020) A fault diagnostic and post-fault reconfiguration scheme for interleaved boost converter in PV-based system. IEEE Trans Power Electron 36(4):3769–3780. https://doi.org/10.1109/TPEL.2020.3018540

  12. Malik H, Mishra S (2017) Artificial neural network and empirical mode decomposition based imbalance fault diagnosis of wind turbine using turbsim, FAST and simulink. IET Renew Power Gener 11(6):889–902. https://doi.org/10.1049/iet-rpg.2015.0382

    Article  Google Scholar 

  13. Malik H, Mishra S (2018) Application of GEP to investigate the imbalance faults in direct-drive wind turbine using generator current signals. IET Renew Power Gener 12(3):279–291. https://doi.org/10.1049/iet-rpg.2016.0689

    Article  Google Scholar 

  14. Malik H, Sharma R (2017) Transmission line fault classification using modified fuzzy Q learning. IET Gen Trans Distrib 11(16):4041–4050. https://doi.org/10.1049/iet-gtd.2017.0331

  15. Yadav AK et al (2013) Application of neuro-fuzzy scheme to investigate the winding insulation paper deterioration in oil-immersed power transformer. Electr Power Energy Syst 53:256–271. https://doi.org/10.1016/j.ijepes.2013.04.023

    Article  Google Scholar 

  16. Ahmad MW et al (2021) Non-invasive model-based open-circuit switch fault detection of AC-bypass leg switches in transformerless PV inverter. IEEE J Emerg Sel Topics Power Electron. https://doi.org/10.1109/JESTPE.2021.3098195

  17. Mishra S et al (2014) Selection of Most Relevant Input Parameters Using Waikato Environment for Knowledge Analysis for Gene Expression Programming Based Power Transformer Fault Diagnosis. International Journal of Electric Power Components and Systems 42(16):1849–1862. https://doi.org/10.1080/15325008.2014.956952

    Article  Google Scholar 

  18. Malik H, Mishra S (2017) Selection of most relevant input parameters using principle component analysis for extreme learning machine based power transformer fault diagnosis model. Int J Electric Power Components Syst 45(12):1339–1352. https://doi.org/10.1080/15325008.2017.1338794

    Article  Google Scholar 

  19. Sharma R, Malik H (2017) EMD and ANN based intelligent fault diagnosis model for transmission line. J Intel Fuzzy Syst 32(4):3043–3050. https://doi.org/10.3233/JIFS-169247

    Article  Google Scholar 

  20. Saad Ahmaduddin S, Malik H (2018) Gene expression programming (GEP) based intelligent model for high performance concrete comprehensive strength analysis. J Intel Fuzzy Syst 35(5):5403–5418. https://doi.org/10.3233/JIFS-169822

  21. Shah AK et al (2018) EMD and ANN based intelligent model for bearing fault diagnosis. J Intel Fuzzy Syst 35(5):5391–5402. https://doi.org/10.3233/JIFS-169821

  22. Malik H, Mishra S (2017) FAST and simulink based simulation investigation of wind turbine faults. Int J Renew Energy Technol 8(3/4):286–304. https://doi.org/10.1504/IJRET.2017.088970

    Article  Google Scholar 

  23. Malik H (2018) Wavelet and Hilbert Huang transform based wind turbine imbalance fault classification model using K-nearest neighbor algorithm (in Press). Int J Renew Energy Technol 9(1/2). https://doi.org/10.1504/IJRET.2018.090105

  24. Alotaibi MA et al (2022) Power quality disturbance analysis using data-driven EMD-SVM hybrid approach. J Intel Fuzzy Syst 42(2):669–678. https://doi.org/10.3233/JIFS-189739

    Article  Google Scholar 

  25. Kukker A et al Reinforcement learning based genetic fuzzy classifier for transformer faults. IETE J Res 1–12. https://doi.org/10.1080/03772063.2020.1732844

  26. Alotaibi MA et al (2022) Cyberattacks identification in IEC 61850 based substation using proximal support vector machine. J Intel Fuzzy Syst 42(2):1213–1222. https://doi.org/10.3233/JIFS-189783

    Article  Google Scholar 

  27. Ahmad MW et al (2022) Development of wide area monitoring system for smart grid application. J Intel Fuzzy Syst 42(2):827–839. https://doi.org/10.3233/JIFS-189752

  28. Azeem A et al (2022) Real-time harmonics analysis of digital substation equipment based on IEC-61850 using hybrid intelligent approach. J Intel Fuzzy Syst 42(2):741–754. https://doi.org/10.3233/JIFS-189745

    Article  Google Scholar 

  29. Sarita K et al (2022) Principal component analysis technique for early fault detection. J Intel Fuzzy Syst 42(2):861–872. https://doi.org/10.3233/JIFS-189755

    Article  Google Scholar 

  30. Bisht VS et al (2022) A data-driven intelligent hybrid method for health prognosis of lithium-ion batteries. J Intel Fuzzy Syst 42(2):897–907. https://doi.org/10.3233/JIFS-189758

  31. Nageswara Rao P et al (2020) Global sliding mode suspension control and condition monitoring of bearingless switched reluctance motor under eccentric faults. Energies 13(20):5485, 1–38. https://doi.org/10.3390/en13205485

  32. Azeem A et al (2021) Design of hardware setup based on IEC 61850 communication protocol for detection & blocking of harmonics in power transformer. Energies 14(24):8284, 1–27. https://doi.org/10.3390/en14248284

  33. Bhattacharjee T et al (2022) Hardware development and interoperability testing of a multivendor-IEC-61850-based digital substation. Energies 15(5):1785, 1–19. https://doi.org/10.3390/en15051785

  34. Sharma R et al (2020) Fuzzy reinforcement learning based intelligent classifier for power transformer faults (in Press). ISA Trans. https://doi.org/10.1016/j.isatra.2020.01.016

    Article  Google Scholar 

  35. Malik H, Almutairi A (2021)Modified fuzzy-Q-learning (MFQL)-based mechanical fault diagnosis for direct-drive wind turbines using electrical signals. IEEE Access 9:52569–52579. https://doi.org/10.1109/ACCESS.2021.3070483

  36. Chandra R et al (2020) A survey of failure mechanisms and statistics for critical electrical equipment in buildings. In: IECON 2020 the 46th annual conference of the IEEE industrial electronics society, pp 1955–1961. https://doi.org/10.1109/IECON43393.2020.9254225.63

  37. Pandya Y et al (2018) Feature extraction using EMD and classifier through artificial neural networks for gearbox fault diagnosis. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing, vol 697, pp 309–317. https://doi.org/10.1007/978-981-13-1822-1_28

  38. Kaushal P et al (2018) A hybrid intelligent model for power quality disturbance classification. Book chapter in applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 697:55–63. https://doi.org/10.1007/978-981-13-1822-1_6

    Article  Google Scholar 

  39. Reza MW et al (2018) Wide area monitoring system using integer linear programming. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing, vol 698, pp 23–30. https://doi.org/10.1007/978-981-13-1819-1_3

  40. Sharma T et al (2018) A novel intelligent bifurcation classification model based on artificial neural network (ANN). Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 698:53–61. https://doi.org/10.1007/978-981-13-1819-1_6

    Article  Google Scholar 

  41. Chack D et al (2018) A novel intelligent transmission line fault diagnosis model based on EEMD and multiclass PSVM. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 698:85–92. https://doi.org/10.1007/978-981-13-1819-1_9

    Article  Google Scholar 

  42. Singh KV et al (2017) Condition monitoring of wind turbine gearbox using electrical signatures. In: IEEE ICMDCS, pp 1–6. https://doi.org/10.1109/ICMDCS.2017.8211718

  43. Mishra S, Malik H Application of fuzzy Q learning (FQL) technique to wind turbine imbalance fault identification using generator current signals. In: Proceedings of IEEE PIICON-2016, pp 1–6, 25–27 Nov 2016. https://doi.org/10.1109/POWERI.2016.8077283

  44. Mishra S, Malik H Application of gene expression programming (GEP) to investigate the health condition of direct-drive wind turbine using FAST and TurbSim. In: Proceedings IEEE IICPE-2016, pp 1–6, 17–19 Nov 2016. https://doi.org/10.1109/IICPE.2016.8079508

  45. Malik H, Aggarwal A, Sharma R (2016) Feature extraction using EMD and classification through probabilistic neural network for fault diagnosis of transmission line. In: Proceedings IEEE ICPEICES-2016, pp 1–6. https://doi.org/10.1109/ICPEICES.2016.7853709

  46. Sharma R et al (2016) Selection of most relevant input parameters using weka for artificial neural network based transmission line fault diagnosis model. In: Proceedings of the international conference on nanotechnology for better living, vol 3, No 1, pp 176. https://doi.org/10.3850/978-981-09-7519-7nbl16-rps-176

  47. Mishra S, Malik H (2016) Application of extreme learning machine (ELM) in paper insulation deterioration estimation of power transformer. In: Proceedings of the international conference on nanotechnology for better living, vol 3, No 1, pp 209. https://doi.org/10.3850/978-981-09-7519-7nbl16-rps-209

  48. Kumar G et al (2016) Learning vector quantization neural network based external fault diagnosis model for three phase induction motor using current signature analysis. Elsevier Procedia Comput Sci 93:1010–1016. https://doi.org/10.1016/j.procs.2016.07.304

    Article  Google Scholar 

  49. Mishra S, Malik H Proximal support vector machine (PSVM) based imbalance fault diagnosis of wind turbine using generator current signals. In: Elsevier energy procedia, vol 90, pp 593–603, 15–17 Dec 2015, IIT Bombay. https://doi.org/10.1016/j.egypro.2016.11.228

  50. Sharma S et al (2015) External fault classification experienced by three-phase induction motor based on multi-class ELM. Elsevier Procedia Comput Sci 70:814–820. https://doi.org/10.1016/j.procs.2015.10.122

    Article  Google Scholar 

  51. Mishra S, Malik H (2015) Application of LVQ network in fault diagnosis of wind turbine using turbsim, FAST and simulink. Michael Faraday IET Int Summit 2015:474–480. https://doi.org/10.1049/cp.2015.1679

    Article  Google Scholar 

  52. Khatri A et al (2015) Probabilistic neural network based incipient fault identification using DGA dataset. Elsevier Procedia Comput Sci 58:665–672. https://doi.org/10.1016/j.procs.2015.08.086

    Article  Google Scholar 

  53. Mishra S, Malik H (2015) Application of probabilistic neural network in fault diagnosis of wind turbine using FAST, turbsim and simulink. Elsevier Procedia Comput Sci 58:186–193. https://doi.org/10.1016/j.procs.2015.08.052

    Article  Google Scholar 

  54. Mittal AP et al External fault identification experienced by 3-phase induction motor using PSVM. In: Proceedings IEEE international conference on power India (PIICON 2014), 5–7 Dec. 2014, New Delhi. https://doi.org/10.1109/POWERI.2014.7117762

  55. Mishra S, Malik H Feature selection using rapidminer and classification through probabilistic neural network for fault diagnostics of power transformer. In: Proceedings IEEE international conference on emerging trends and innovation in technology (INDICON 2014), 11–13 Dec 2014, Pune. https://doi.org/10.1109/INDICON.2014.7030427

  56. Mishra S, Malik H Fault identification of power transformers using proximal support vector machine (PSVM). In: Proceedings IEEE international conference on power electronics (IICPE 2014), 8–10 Dec 2014, NIT Kurusherta. https://doi.org/10.1109/IICPE.2014.7115842

  57. Mishra S, Malik H Application of gene expression programming (GEP) in power transformers fault diagnosis using DGA. In: Proceedings IEEE international conference on power India (PIICON 2014), 5–7 Dec 2014, New Delhi. https://doi.org/10.1109/POWERI.2014.7117782

  58. Mishra S, Malik H (2015) Extreme learning machine based fault diagnosis of power transformer using IEC TC10 and its related data. In: Proceedings IEEE India annual conference (INDICON-2015), pp 1–5. https://doi.org/10.1109/INDICON.2015.7443245

  59. Singh S et al (2012) UV/VIS response based fuzzy logic for health assessment of transformer oil. In: Elsevier procedia engineering, ISSN: 1877-7058, vol 30, pp 905–912. https://doi.org/10.1016/j.proeng.2012.01.944

  60. Mahto T et al (2012) Make use of DGA to carry out the transformer oil-immersed paper deterioration condition estimation with fuzzy-logic. In: Elsevier procedia engineering, ISSN: 1877-7058, vol 30, pp 569–576. https://doi.org/10.1016/j.proeng.2012.01.900

  61. Jarial RK et al Application research based on modern technology for transformer health index estimation. In: Proceedings IEEE international multi conference on systems, signals and devices (SSD), pp 1–7, 20–23 March 2012, Chemnitz. https://doi.org/10.1109/SSD.2012.6198012

  62. Mahto MT et al (2019) Condition monitoring and fault detection & diagnostics of wind energy conversion system (WECS). In: Springer Nature book: soft computing in condition monitoring and diagnostics of electrical and mechanical systems, pp 121–154. https://doi.org/10.1007/978-981-15-1532-3_5

  63. Bakhsh FI et al (2019) Fault analysis of variable frequency transformer (VFT) for power transfer in-between synchronous grids. In: Springer Nature book: soft computing in condition monitoring and diagnostics of electrical and mechanical systems, pp 269–286. https://doi.org/10.1007/978-981-15-1532-3_12

  64. Mahto T et al (2011) An expert system for incipient fault diagnosis and condition assessment in transformers. In: Proceedings IEEE international conference on computational intelligence and communication networks, pp 138–142. https://doi.org/10.1109/CICN.2011.27

  65. Yadav AK et al (2011) Make use of UV/VIS spectrophotometer to determination of dissolved decay products in mineral insulating oils for transformer remnant life estimation with ANN. In: Proceedings IEEE international conference on engineering sustainable solutions, pp 1–6, INDICON. https://doi.org/10.1109/INDCON.2011.6139574

  66. Jarial RK et al Application research based on modern technology to investigating causes and detection of failures in transformers on the bases of importance level. In: Proceedings IEEE international conference on engineering sustainable solutions, pp 1–6, INDICON. https://doi.org/10.1109/INDCON.2011.6139577

  67. Kushwaha N et al (2011) Paper insulation deterioration estimation of power transformer using fuzzy-logic: part-2. In: Proceedings IEEE international conference on engineering sustainable solutions, pp 1–5, INDICON. https://doi.org/10.1109/INDCON.2011.6139532

  68. Jarial RK et al (2011) Application of modern technology for fault diagnosis in power transformer energy management. In: Proceedings IEEE international conference on communication system’s network technologies, pp 376–381. https://doi.org/10.1109/CSNT.2011.84

  69. Jarial RK et al (2011) Fuzzy-logic applications in cost analysis of transformer’s main material weight. In: Proceedings IEEE international conference on computational intelligence and communication networks, pp 386–389. https://doi.org/10.1109/CICN.2011.81

  70. Yadav AK et al (2015) Application of rapid miner In ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in northwestern India. Renew Sustain Energy Rev 52:1093–1106. https://doi.org/10.1016/j.rser.2015.07.156

    Article  Google Scholar 

  71. Yadav AK et al (2014) Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renew Sustain Energy Rev 31:509–519. https://doi.org/10.1016/j.rser.2013.12.008

    Article  Google Scholar 

  72. Yadav AK et al (2018) Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based radial basis function neural network. Renew Sustain Energy Rev 81, Part 2:2115–2127. https://doi.org/10.1016/j.rser.2017.06.023

  73. Azeem A et al (2018) k-NN and ANN based deterministic and probabilistic wind speed forecasting intelligent approach. J Intel Fuzzy Syst 35(5):5021–5031. https://doi.org/10.3233/JIFS-169786

    Article  Google Scholar 

  74. Arora P et al (2018) Wind energy forecasting model for northern-western region of India using decision tree and MLP neural network approach. Interdiscip Environ Rev 19(1):13–30. https://doi.org/10.1504/IER.2018.089766

    Article  Google Scholar 

  75. Fatema N et al (2022) Hybrid approach combining EMD, ARIMA and Monte Carlo for multi-step ahead medical tourism forecasting. J Intel Fuzzy Syst 42(2):1235–1251. https://doi.org/10.3233/JIFS-189785

    Article  Google Scholar 

  76. Khursheed T et al (2022) Multi-step ahead time-series wind speed forecasting for smart-grid application. J Intel Fuzzy Syst 42(2):633–646. https://doi.org/10.3233/JIFS-189736

    Article  Google Scholar 

  77. Fatema N et al (2022) Deterministic and probabilistic occupancy detection with a novel heuristic optimization and back-propagation (BP) based algorithm. J Intel Fuzzy Syst 42(2):779–791. https://doi.org/10.3233/JIFS-189748

    Article  Google Scholar 

  78. Alotaibi MA et al (2022) A new hybrid model combining EMD and neural network for multi-step ahead load forecasting. J Intel Fuzzy Syst 42(2):1099–1114. https://doi.org/10.3233/JIFS-189775

    Article  Google Scholar 

  79. Yadav AK et al (2020) A novel hybrid approach based on relief algorithm and fuzzy reinforcement learning approach for predicting wind speed. Sustain Energy Technol Assess 43. https://doi.org/10.1016/j.seta.2020.100920

  80. Yadav AK et al (2021) Case study of grid-connected photovoltaic power system installed at monthly optimum tilt angles for different climatic zones in India. IEEE Access 9:60077–60088. https://doi.org/10.1109/ACCESS.2021.3073136

    Article  Google Scholar 

  81. Yadav AK et al (2021) Novel approach to investigate the influence of optimum tilt angle on minimum cost of energy based maximum power generation and sizing of PV systems: a case study of diverse climatic zones in India. IEEE Access 9:110103–110115. https://doi.org/10.1109/ACCESS.2021.3102153

    Article  Google Scholar 

  82. Yadav AK et al (2014) Comparison of different artificial neural network techniques in prediction of solar radiation for power generation using different combinations of meterological variables. In: Proceedings IEEE international conference on power electronics, drives and energy systems (PEDES-2014), pp 1–5. https://doi.org/10.1109/PEDES.2014.7042063

  83. Kumar G et al (2016) Generalized regression neural network based wind speed prediction model for western region of India. Elsevier Procedia Comput Sci 93:26–32. https://doi.org/10.1016/j.procs.2016.07.177

    Article  Google Scholar 

  84. Garg P et al (2016) Infogain attribute evaluator and ANN based wind speed prediction model for Rajasthan, north-west region of India. In: Proceedings of the international conference on nanotechnology for better living, vol 3, No 1, p 233. https://doi.org/10.3850/978-981-09-7519-7nbl16-rps-233

  85. Savita1 et al (2016) Wind speed and power prediction of prominent wind power potential states in India using GRNN. In: Proceedings IEEE ICPEICES-2016, pp 1–6. https://doi.org/10.1109/ICPEICES.2016.7853220

  86. Savita et al (2016) Application of artificial neural network for long term wind speed prediction. In: Proceedings IEEE CASP, pp 217–222, 9–11 June 2016. https://doi.org/10.1109/CASP.2016.7746168

  87. Yadav AK et al (2018) Short term wind speed forecasting for power generation in Hamirpur, Himachal Pradesh, India, using artificial neural networks. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 697:263–271. https://doi.org/10.1007/978-981-13-1822-1_24

    Article  Google Scholar 

  88. Vinoop P et al (2018) PSO-NN-based hybrid model for long-term wind speed prediction: a study on 67 cities of India. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 697:319–327. https://doi.org/10.1007/978-981-13-1822-1_29

    Article  Google Scholar 

  89. Singh et al M (2018) Comparative study of different neural networks for 1-year ahead load forecasting. In: Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing, vol 697, pp 31–42. https://doi.org/10.1007/978-981-13-1822-1_4

  90. Yadav V et al (2018) Forecasting of nitrogen dioxide at one day ahead using non-linear autoregressive neural network for environmental applications. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 698:615–623. https://doi.org/10.1007/978-981-13-1819-1_58

    Article  Google Scholar 

  91. Yadav AK et al (2018) 10-min ahead forecasting of wind speed for power generation using nonlinear autoregressive neural network. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 698:235–244. https://doi.org/10.1007/978-981-13-1819-1_23

    Article  Google Scholar 

  92. Garg S et al (2018) Long-term solar irradiance forecast using artificial neural network: application for performance prediction of Indian cities. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 697:285–293. https://doi.org/10.1007/978-981-13-1822-1_26

    Article  Google Scholar 

  93. Azeem A et al Application of Waikato environment for knowledge analysis based artificial neural network models for wind speed forecasting. In: Proceedings IEEE PIICON-2016, pp 1–6, 25–27 Nov 2016. https://doi.org/10.1109/POWERI.2016.8077352

  94. Saad S et al Selection of most relevant input parameters using WEKA for artificial neural network based concrete compressive strength prediction model. In: Proceedings IEEE PIICON-2016, pp 1–6, 25–27 Nov 2016. https://doi.org/10.1109/POWERI.2016.8077368

  95. Azeem A et al (2016) Artificial neural network based intelligent model for wind power assessment in India. In: Proceedings IEEE PIICON-2016, pp 1–6, 25–27 Nov 2016. https://doi.org/10.1109/POWERI.2016.8077305

  96. Yadav AK et al (2015) ANN based prediction of daily global solar radiation for photovoltaics applications. In: Proceedings IEEE India annual conference (INDICON), pp 1–5. https://doi.org/10.1109/INDICON.2015.7443186

  97. Reddy Chimmula VK et al (2021) Deep learning and statistical based daily stock price forecasting and monitoring. In: Springer Nature book: AI and machine learning paradigms for health monitoring system: intelligent data analytics, under book series “Studies in Big Data”, pp 203–216. https://doi.org/10.1007/978-981-33-4412-9_13

  98. Fatema N et al (2020) Metaheurestic algorithm based hybrid model for identification of building sale prices. In: Springer Nature book: metaheuristic and evolutionary computation: algorithms and applications, under book series “studies in computational intelligence”, pp 689–704. https://doi.org/10.1007/978-981-15-7571-6_32

  99. Fatema N et al (2020) Data-driven occupancy detection hybrid model using particle swarm optimization based artificial neural network. In: Springer Nature book: metaheuristic and evolutionary computation: algorithms and applications, under book series “studies in computational intelligence”, pp 283–297. https://doi.org/10.1007/978-981-15-7571-6_13

  100. Fatema N et al (2019) Data driven intelligent model for sales prices prediction and monitoring of a building. In: Springer Nature book: soft computing in condition monitoring and diagnostics of electrical and mechanical systems, pp 407–421. https://doi.org/10.1007/978-981-15-1532-3_18

  101. Yadav A et al (2011) Application research based on artificial neural network (ANN) to predict no load loss for transformer design. In: Proceedings IEEE international conference on communication system’s network technologies, pp 180–183. https://doi.org/10.1109/CSNT.2011.45

  102. Mahto T et al (2012) Impact of usage duration on mobile phones EMI characteristics. In: Proceedings IEEE international conference on communication system’s network technologies, pp 558–562. https://doi.org/10.1109/CSNT.2012.126

  103. Vigya et al (2021) Renewable generation based hybrid power system control using fractional order-fuzzy controller. Energy Rep 7C:641–653. https://doi.org/10.1016/j.egyr.2021.01.022

    Article  Google Scholar 

  104. Jadoun VK et al (2021) Optimal scheduling of non-convex cogeneration units using exponentially varying whale optimization algorithm. Energies 14(4):1–30. https://doi.org/10.3390/en14041008

    Article  Google Scholar 

  105. Mahto T et al (2021) Fractional order fuzzy based virtual inertia controller design for frequency stability in isolated hybrid power systems. Energies 14(6):1634. https://doi.org/10.3390/en14061634

  106. Mahto T et al (2018) Load frequency control of a solar-diesel based isolated hybrid power system by fractional order control using particle swarm optimization. J Intel Fuzzy Syst 35(5):5055–5061. https://doi.org/10.3233/JIFS-169789

    Article  Google Scholar 

  107. Nandan NK et al (2018) Solving nonconvex economic thermal power dispatch problem with multiple fuel system and valve point loading effect using fuzzy reinforcement learning. J Intel Fuzzy Syst 35(5):4921–4931. https://doi.org/10.3233/JIFS-169776

  108. Devarapalli R et al (2022) An approach to solve OPF problems using a novel hybrid whale and sine cosine optimization algorithm. J Intel Fuzzy Syst 42(2):957–967. https://doi.org/10.3233/JIFS-189763

    Article  Google Scholar 

  109. Rao BV et al (2022) Wind integrated power system to reduce emission: an application of Bat algorithm. J Intel Fuzzy Syst 42(2):1041–1049. https://doi.org/10.3233/JIFS-189770

    Article  Google Scholar 

  110. Bajaj M et al (2021) Optimal design of passive power filter using multi-objective pareto-based firefly algorithm and analysis under background and load-side’s nonlinearity. IEEE Access 9:22724–22744. https://doi.org/10.1109/ACCESS.2021.3055774

    Article  Google Scholar 

  111. Gupta S et al (2021) A hybrid Jaya-Powell’s pattern search algorithm for multi-objective optimal power flow incorporating distributed generation. Energies 14(10), 2831:2–24. https://doi.org/10.3390/en14102831

  112. Singh S et al (2021) Influence of wind power on modeling of bidding strategy in a promising power market with modified gravitational search algorithm. Appl Sci 11(10), 4438:2–16. https://doi.org/10.3390/app11104438

  113. Singh S et al (2021) Strategic bidding in the presence of renewable sources for optimizing the profit of the power suppliers. IEEE Access 9:70221–70232. https://doi.org/10.1109/ACCESS.2021.3078288

    Article  Google Scholar 

  114. Chankaya M et al (2021) Generalized Normal Distribution Algorithm based control of 3-phase 4-wire grid-tied PV-hybrid energy storage system. Energies 14(14), 4355:1–22. https://doi.org/10.3390/en14144355

  115. Singh S et al (2021) Impacts of renewable sources of energy on bid modeling strategy in an emerging electricity market using oppositional gravitational search algorithm. Energies 14(18), 5726:1–22. https://doi.org/10.3390/en14185726

  116. Gupta et al S (2021) A robust optimization approach for optimal power flow solutions using Rao algorithms. Energies 14(17), 5449, 1–28. https://doi.org/10.3390/en14175449

  117. Chankaya M et al (2021) Multi-objective grasshopper optimization based MPPT and VSC control of grid-tied PV-battery system. Electronics 10(22), 2770:1–24. https://doi.org/10.3390/electronics10222770

  118. Prakash P et al (2021) A novel hybrid approach for optimal placement of non-dispatchable distributed generations in radial distribution system. Mathematics 9(24), 3171:1–27. https://doi.org/10.3390/math9243171

  119. Nagendra K et al (2021) Novel neural network-based load frequency control scheme: a case study of restructured power system. IEEE Access 9:162231–162242. https://doi.org/10.1109/ACCESS.2021.3133360

    Article  Google Scholar 

  120. Shabbiruddin et al (2021) Fuzzy-based investigation of challenges for the deployment of renewable energy power generation. Energies 15(1), 58:1–16

    Google Scholar 

  121. Prakash P et al (2022) A Novel analytical approach for optimal integration of renewable energy sources in distribution systems. Energies 15(4), 1341:1–23. https://doi.org/10.3390/en15041341

  122. Chankaya M et al (2022) Stability analysis of chaotic grey-wolf optimized grid-tied PV-hybrid storage system during dynamic conditions. Electronics 11(4), 567:1–23. https://doi.org/10.3390/electronics11040567

  123. Mohammad K et al (2022) Fuzzy-logic-based comparative analysis of different maximum power point tracking controllers for hybrid renewal energy systems. Mathematics 10(3), 529:1–28. https://doi.org/10.3390/math10030529

  124. Kumar N et al (2022) Application of fractional order-PID control scheme in automatic generation control of a deregulated power system in the presence of SMES unit. Mathematics 10(3), 521:1–16. https://doi.org/10.3390/math10030521

  125. Minai AF et al (2022) Performance analysis and comparative study of a 467.2 kWp grid-interactive spv system: a case study. Energies, 15(3), 1107:1–19. https://doi.org/10.3390/en15031107

  126. Reddy VKC et al (2019) Novel application of relief algorithm in cascade ANN model for prognosis of photovoltaic maximum power under sunny outdoor condition of Sikkim India: a case study. In: Springer Nature book: soft computing in condition monitoring and diagnostics of electrical and mechanical systems, pp 387–405. https://doi.org/10.1007/978-981-15-1532-3_17

  127. Yadav AK et al (2020) ANN- and multiple linear regression-based modelling for experimental investigation of photovoltaic module maximum power production under outdoor condition of mountainous region. In: Springer nature book: modern maximum power point tracking techniques for photovoltaic energy systems, pp 229–245. https://doi.org/10.1007/978-3-030-05578-3_8

  128. Fatema N et al (2019) Big-data analytics based energy analysis and monitoring for multi-story hospital buildings: case study. In: Springer Nature book: soft computing in condition monitoring and diagnostics of electrical and mechanical systems, pp 325–343. https://doi.org/10.1007/978-981-15-1532-3_14

  129. Yadav AK et al (2018) Chapter 11: techno economic feasibility analysis of different combination of PV-wind-diesel-battery hybrid system. In: Elsevier Book: hybrid-renewable energy systems in microgrids, pp 203–218. https://doi.org/10.1016/B978-0-08-102493-5.00011-X

  130. Minai AF et al (2020) Metaheuristics paradigms for renewable energy systems: advances in optimization algorithms. In: Springer Nature book: metaheuristic and evolutionary computation: algorithms and applications, under book series “studies in computational intelligence, pp 35–61. https://doi.org/10.1007/978-981-15-7571-6_2

  131. Mahto T et al (2020) Traffic signal control to optimize run time for energy saving: a smart city paradigm. In: Springer Nature book: metaheuristic and evolutionary computation: algorithms and applications, under book series “studies in computational intelligence, pp 491–497. https://doi.org/10.1007/978-981-15-7571-6_21

  132. Rahi OP et al (2012) Power system voltage stability assessment through artificial neural network. In: Elsevier procedia engineering, ISSN: 1877-7058, vol 30, pp 53–60. https://doi.org/10.1016/j.proeng.2012.01.833

  133. Mahto T et al (2018) Fractional order control and simulation of wind-biomass isolated hybrid power system using particle swarm optimization. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 698:277–287. https://doi.org/10.1007/978-981-13-1819-1_28

    Article  Google Scholar 

  134. Yadav AK et al (2016) Tilt angle calculation for installation of PV systems for mountainous regions of Himachal Pradesh India. In: Proceedings IEEE ICEPES 2016, pp 205–209, 14–16 Dec. 2016. https://doi.org/10.1109/ICEPES.2016.7915931

  135. Yadav AK et al (2015) Optimization of tilt angle for installation of solar photovoltaic system for six sites in India. In: Proceedings IEEE international conference on energy economics and environment (ICEEE-2015), pp 1–4. https://doi.org/10.1109/EnergyEconomics.2015.7235078

  136. Fatima K et al (2022) Intelligent approach-based maximum power point tracking for renewable energy system: a review. In: Malik H, Ahmad MW, Kothari D (eds) Intelligent data analytics for power and energy systems. lecture notes in electrical engineering, vol 802, pp 373–405. Springer. https://doi.org/10.1007/978-981-16-6081-8_19

  137. Kumar N et al (2022) Modeling and analysis of an intelligent approach for load frequency control in a deregulated power system: a case study based on different control schemes. In: Malik H, Ahmad MW, Kothari D (eds) Intelligent data analytics for power and energy systems. Lecture notes in electrical engineering, vol 802, pp 61–83. Springer. https://doi.org/10.1007/978-981-16-6081-8_4

  138. Yadav AK et al (2020) Optimization of tilt angle for intercepting maximum solar radiation for power generation. In: Springer Nature book: optimization of power system problems (Methods, Algorithms and MATLAB Codes), pp 203–232. https://doi.org/10.1007/978-3-030-34050-6_9

  139. Gopal C et al (2022) Digital transformation through advances in artificial intelligence and machine learning. J Intel Fuzzy Syst 42(2):615–622. https://doi.org/10.3233/JIFS-189787

    Article  Google Scholar 

  140. Shahid A et al (2018) Decrypting wrist movement from MEG signal using SVM classifier. J Intel Fuzzy Syst 35(5):5123–5130. https://doi.org/10.3233/JIFS-169796

    Article  Google Scholar 

  141. Fatema N et al (2022) Data driven intelligent model for quality management in healthcare. J Intel Fuzzy Syst 42(2):1155–1169. https://doi.org/10.3233/JIFS-189779

    Article  Google Scholar 

  142. Sanaullah A et al (2022) Analyzing impact of relationship benefit and commitment on developing loyalty using machine intelligence approach. J Intel Fuzzy Syst 42(2):699–712. https://doi.org/10.3233/JIFS-189742

    Article  Google Scholar 

  143. Smriti S et al (2018) Intelligent tools and techniques for signals, machines and automation. J Intel Fuzzy Syst 35(5):4895–4899. https://doi.org/10.3233/JIFS-169773

    Article  Google Scholar 

  144. Zhou L et al (2021) An optimal higher order likelihood distribution based approach for strong edge and high contrast restoration. IEEE Access 9:109012–109024. https://doi.org/10.1109/ACCESS.2021.3101413

    Article  Google Scholar 

  145. Kumar D et al (2021) 6D-chaotic system and 2D fractional discrete cosine transform based encryption of biometric templates. IEEE Access 9:103056–103074. https://doi.org/10.1109/ACCESS.2021.3097881

  146. Asyraf A et al (2021) Machine learning approach for targeting and recommending a product for project management. Mathematics 9(16), 1958:1–26. https://doi.org/10.3390/math9161958

  147. Arvind D et al (2021) Likelihood estimation and wavelet transformation based optimization for minimization of noisy pixels. In: IEEE access, vol 9, pp 132168–132190. https://doi.org/10.1109/ACCESS.2021.3113857

  148. Jain H, Fatema N (2018) Layer recurrent neural network based intelligent user activity classification model using smartphone. J Intel Fuzzy Syst (JIFS) 35(5):5085–5097. https://doi.org/10.3233/JIFS-169793

    Article  Google Scholar 

  149. Nuzhat F (2018) Application of neuro-fuzzy scheme to improve purchasing process in a hospital. J Intel Fuzzy Syst (JIFS) 35(5):5131–5146. https://doi.org/10.3233/JIFS-169797

    Article  Google Scholar 

  150. Anil BK et al (2011) Application research based on fuzzy logic to predict minimum loss for transformer design optimization. In: Proceedings IEEE International conference on computational intelligence and communication networks, pp 207–211. https://doi.org/10.1109/CICN.2011.41

  151. Yadav AK et al (2011) Cost analysis of transformer’s main material weight with artificial neural network (ANN). In: Proceedings IEEE international conference on communication system’s network technologies, pp 184–187. https://doi.org/10.1109/CSNT.2011.46

  152. Khatri A et al (2012) Optimal design of power transformer using genetic algorithm. In: Proceedings IEEE international conference on communication system’s network technologies, pp 830–833. https://doi.org/10.1109/CSNT.2012.180

  153. Goel P et al (2019) Application of evolutionary reinforcement learning (ERL) approach in control domain: a review. Smart Innov Commun Comput Sci Ser 670:273–288. https://doi.org/10.1007/978-981-10-8971-8_25

    Article  Google Scholar 

  154. Roy N et al (2018) Extreme learning machine-based image classification model using handwritten digit database. Book chapter in Applications of artificial intelligence techniques in engineering, advances in intelligent systems and computing 697:607–618. https://doi.org/10.1007/978-981-13-1822-1_57

    Article  Google Scholar 

  155. Kukker A et al (2016) Foreamrm movements classification of EMG signals using Hilbert Huang transform and artificial neural network. In: Proceedings IEEE PIICON-2016, pp 1–6, 25–27 Nov. 2016. https://doi.org/10.1109/POWERI.2016.8077417

  156. Fatema N. Brain health assessment via classification of EEG signals for seizure and non-seizure conditions using extreme learning machine (ELM). In: Malik H, Srivastava S, Sood Y, Ahmad A (eds) Applications of artificial intelligence techniques in engineering. advances in intelligent systems and computing, vol 697. Springer. https://doi.org/10.1007/978-981-13-1822-1_10

  157. What is Machine Learning? www.ibm.com. Retrieved 2021-08-15. Available online at https://www.ibm.com/cloud/learn/machine-learning. Accessed on 10 Dec 2021

  158. Nilsson N (1965) Learning machines, McGraw Hill

    Google Scholar 

  159. Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning, The MIT Press ISBN 9780262018258

    Google Scholar 

  160. Russell SJ, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn, Prentice Hall ISBN 9780136042594

    Google Scholar 

  161. Hinton G, Sejnowski T (1999) Unsupervised learning: foundations of neural computation. MIT Press. ISBN 978-0262581684

    Google Scholar 

  162. Duda RO, Hart PE; Stork DG (2001) Unsupervised learning and clustering. Pattern classification, 2nd ed. Wiley. ISBN 0-471-05669-3

    Google Scholar 

  163. Bishop CM (2006) Pattern recognition and machine learning, Springer, ISBN 978-0-387-31073-2

    Google Scholar 

  164. Sutton RS, Barto AG (2018) Reinforcement learning: An introduction, 2nd ed. MIT Press. ISBN 978-0-262-03924-6

    Google Scholar 

Download references

Acknowledgements

The editors would like to acknowledge the support from Krishna Engineering College (KEC), Ghaziabad, India to manage the event of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC-2021) - Virtual Mode. The editors extend their appreciation and acknowledgement to the Intelligent Prognostic Private Limited, India, to provide all types of technical and non-technical facilities, cooperation and support in each stage to make this book real.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomar, A., Malik, H., Kumr, P., Iqbal, A. (2022). Editorial: Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC). In: Tomar, A., Malik, H., Kumar, P., Iqbal, A. (eds) Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication. Lecture Notes in Electrical Engineering, vol 915. Springer, Singapore. https://doi.org/10.1007/978-981-19-2828-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2828-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2827-7

  • Online ISBN: 978-981-19-2828-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics